Conductive Distributed Bragg Reflector Fabricated at Low Temperature

Article Preview

Abstract:

A conductive DBR electrode fabricated using the single Indium tin oxide (ITO) conductive material is proposed. The high refractive index of the dense ITO film was achieved by RF sputtering at room temperature and the porous ITO film with low refractive index was prepared by applying supercritical CO2 (SCCO2) treatment at 60 °C on gel-coated ITO thin films. The index contrast of the ITO bilayers was higher than 0.5 at a wavelength of 550 nm. In addition, small deviations on the optical thickness of the ITO bilayers were observed during the DBR stacking processes. For the DBR comprising 4 periods ITO bilayers, the reflectance and sheet resistance of 72.8% and 35 Ω/ were achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

364-368

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. C. Lin and C. T. Lee, IEEE Photon. Technol. Lett. Vol. 22 (2010), p.1291.

Google Scholar

[2] J. Potfajova, B. Schmidt, M. Helm, T. Gemming, M. Benyoucef, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. Vol. 96 (2010), p.151113.

DOI: 10.1063/1.3385153

Google Scholar

[3] L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, 1 C. Hong, X. Duan, 1 J. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. Vol. 93 (2008), p.221105.

DOI: 10.1063/1.3039787

Google Scholar

[4] R. R. Lunt, and V. Bulovic, Appl. Phys. Lett. Vol. 98 (2011), p.113305.

Google Scholar

[5] T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, Appl. Phys. Lett. Vol. 97 (2010), p.071114.

Google Scholar

[6] T. Wunderer, J. E. Northrup, Z. Yang, M. Teepe, A. Strittmatter, N. M. Johnson, P. Rotella, and M. Wraback, Appl. Phys. Lett. Vol. 99 (2011), p.201109.

DOI: 10.1063/1.3663575

Google Scholar

[7] I. J. Fritz, J. F. Klem, and J. R. Wendt, Appl. Phys. Lett. Vol. 57 (1991), p.753.

Google Scholar

[8] R. L. Thornton, R. D. Burnham, and W. Streifer, Appl. Phys. Lett. Vol. 45 (1984), p.1028.

Google Scholar

[9] R. H Horng, W. K. Wang, S. Y. Huang, and D. S. Wuu, IEEE Photon Tech Lett. Vol. 18 (2006), p . 457.

Google Scholar

[10] N. T. Gabriel, S. S. Kim, and J. J. Talghader, Optics Lett. Vol. 34 (2009), p. (1958).

Google Scholar

[11] T. C. Lu, T. T. Kao, C. C. Kao, J. T. Chu, K. F. Yeh, L. F. Lin, Y. C. Peng, H. W. Huang, H. C. Kuo, and S. C. Wang, IEEE Electron Dev. Lett. Vol. 28 (2007) , p.884.

DOI: 10.1109/led.2007.904906

Google Scholar

[12] M. F. Schubert, J. -Q. Xi, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. Vol. 90 (2007), p.141115.

Google Scholar

[13] P. G. O'Brien, D. P. Puzzo, A. Chutinan, L. D. Bonifacio, G. A. Ozin, and N. P. Kherani, Adv. Mater. Vol. 22 (2010), p.611.

DOI: 10.1002/adma.200902605

Google Scholar

[14] T. D. N. Phan, H. D. Pham, S. Kim, E. S. Oh, E. J. Kim, and E. W. Shin, J. Ind. Eng. Chem. Vol. 16 (2010), p.823.

Google Scholar

[15] S. Boujday, F. Wunsch, P. Portes, J. F. Bocqueta, and C. C. Justin, Sol. Energy Mater. Sol. Cells Vol. 83 (2004), p.421.

Google Scholar

[16] Y. Wan, J. Ma, W. Zhou, Y. Zhu, X. Song, and H. Li, Appl. Catal. A Vol. 277 (2004), p.55.

Google Scholar

[17] U. Kopcak, R. S. Mohamed, J. of Supercritical Fluids Vol. 34 (2005), p.209.

Google Scholar

[18] J. Zhang, S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. LaBerge, and Y. H. An, J. Microbiol. Methods Vol. 66 (2006), p.479.

Google Scholar

[19] W. C. Tien, A. K. Chu, Sol. Energy Mater. Sol. Cells Vol. 100 (2012), p.258.

Google Scholar