[1]
Zhang Xueliang. Mechanical Joints' Surface Dynamic Characteristics and Application[M]. Beijing: China Science and Technology Press, 2002. (In Chinese).
Google Scholar
[2]
Wang Zhiyong, Hu Xiaoqiu, Gu Simin, et al. Study on Influence Factors of Normal Dynamic Characteristic Parameters of Fixed Joints[J]. Chinese Journal of Coal Mine Machinery, 2011, 32(7): 37-39. (In Chinese).
Google Scholar
[3]
Ibrahim R A, Pettit C L. Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners[J]. Journal of Sound and Vibration. 2005, 279: 857-936.
DOI: 10.1016/j.jsv.2003.11.064
Google Scholar
[4]
Greenwood J A, Williamson J B P. Contact of Nominally Flat Surfaces[J]. Proceedings of the Royal Society of London, 1966, Series A Mathematical and Physical Sciences 295(1442): 300-319.
DOI: 10.1098/rspa.1966.0242
Google Scholar
[5]
Chang W R, Etsion I, Bogy D B. An Elastic-Plastic Model for the Contact of Rough Surfaces[J]. ASME Journal of Tribology, 1987, 109(2): 257-263.
DOI: 10.1115/1.3261348
Google Scholar
[6]
Chang W R, Etsion I, Bogy D B. Adhesion Model for Metallic Rough Surfaces[J]. ASME Journal of Tribology, 1988, 110(1): 50-56.
DOI: 10.1115/1.3261574
Google Scholar
[7]
Chang W R, Etsion I, Bogy D B. Static Friction Coefficient Model for Metallic Rough Surfaces[J]. ASME Journal of Tribology, 1988, 110(1): 57-63.
DOI: 10.1115/1.3261575
Google Scholar
[8]
Cohen D, Kligerman Y, Etsion I. A Model for Contact and Static Friction of Nominally Flat Rough Surfaces Under Full Stick Contact Condition[J]. ASME Journal of Tribology, 2008, 130(3): 031401-1-031401-9.
DOI: 10.1115/1.2908925
Google Scholar
[9]
Kadin Y, Kligerman Y, Etsion I. Cyclic Loading of an Elastic-Plastic Adhesive Spherical Microcontact[J]. Journal of Applied Physics, 2008, 104(7): 073522-1-073522-8.
DOI: 10.1063/1.2990770
Google Scholar
[10]
Majumdar A, Bhushan B. Fractal Model of Elastic-Plastic Contact Between Rough Surfaces[J]. ASME Journal of Tribology, 1991, 113(1): 1-11.
DOI: 10.1115/1.2920588
Google Scholar
[11]
Wang S, Komvopoulos K. A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part Ⅰ- Elastic Contact and Heat Transfer Analysis[J]. ASME Journal of Tribology, 1994, 116(4): 812-823.
DOI: 10.1115/1.2927338
Google Scholar
[12]
Wang S, Komvopoulos K. A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part Ⅱ- Multiple Domains, Elastoplastic Contacts and Applications[J]. ASME Journal of Tribology, 1994, 116(4): 824-832.
DOI: 10.1115/1.2927341
Google Scholar
[13]
Wang S, Komvopoulos K. A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces[J]. ASME Journal of Tribology, 1995, 117(2): 203-215.
DOI: 10.1115/1.2831228
Google Scholar
[14]
Wang Shao. Real Contact Area of Fractal-Regular Surfaces and Its Implications in the Law of Friction[J]. Journal of Tribology, 2004, 126(1): 1-8.
DOI: 10.1115/1.1609493
Google Scholar
[15]
Yang Hongping, Fu Weiping Wang, Wen, etc. Calculation Model of the Normal Contact Stiffness of Joints Based on the Fractal Geometry and Contact Theory [J]. Journal of Mechnical Engineering, 2013, 49(01): 102-107. (In Chinese).
DOI: 10.3901/jme.2013.01.102
Google Scholar
[16]
Whitehouse D J, Archard J F. The Properties of Random Surfaces of Significance in Their Contact[J]. Proceedings of the Royal Society of London, 1970, Series A Mathematical and Physical Sciences 316(1524): 97-121.
DOI: 10.1098/rspa.1970.0068
Google Scholar
[17]
Ge Shirong. The Rough Surface Fractal Characteristics and Fractal Research[J]. Journal of Tribology, 1997, 17(01): 74-81. (In Chinese).
Google Scholar
[18]
Chen Guoan, Ge Shirong, Wang Junxiang. The Application of Fractal Theory in Tribology Research [J]. Journal of Tribology, 1998, 18(02): 84-89. (In Chinese).
Google Scholar
[19]
Chen Guoan, Ge Shirong. Rough Surface Contour Measurement Fractal Interpolation Simulation[J]. Journal of Tribology, 1998, 18(04): 59-63. (In Chinese).
Google Scholar
[20]
M. Yoshimura and K. Okushima. Measurement of Dynamic Rigidity and Damping Property for Simplified Joint Models and Computer Simulation[C]. Annals of the CIRP. 1977. 25(3): 193~198.
Google Scholar
[21]
M. Yoshimura, K. Okushima. Computer-Aided Design Improvement of Machine Tool Structure Incorporating Joint Dynamics Data[J]. Annals of the CIRP. 1979. 28(1): 241~246.
Google Scholar
[22]
Yang Jiahua, Chen Weifu, Huang Xudong, etc. Research of Machine Tool Bed Column Joint Surface Parameter Identification[J]. Journal of Beijing University of Technology, 1999, 25(1): 44-49. (In Chinese).
Google Scholar
[23]
Zhang Bo, Chen Tianning. Parameters Recognition & Dynamic Analysis for Jointing Surface Between Separable Structures of A CNC Lathe Bed. Modern Manufacturing Engineering, 2004(6): 91-93. (In Chinese).
Google Scholar
[24]
Mao Kuanmin, Li Bin, Wu Jun, et al. Stiffness Influential Factors-Based Dynamic Modeling and Its Parameter Identification Method of Fixed Joints in Machine Tools[J]. International Journal of Machine Tools & Manufacture, 2010, 50(2): 156-164.
DOI: 10.1016/j.ijmachtools.2009.10.017
Google Scholar
[25]
Mao Kuanmin, Ye Jun, Li Bin. Development of Rapid Dynamics Modeling System of Machine Tool Based on PATRAN[J]. China Mechnical Engineering, 2008, 19(10): 1144-1148. (In Chinese).
Google Scholar
[26]
Mao Kuanmin, Lin Bin. Response Signals-Based Structural Modal Parameter Identification[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2008, 36(7): 77-80. (In Chinese).
Google Scholar
[27]
Mao Kuanmin, Lin Bin, Xie Bo, etc. Dynamic Modeling of the Movable Joint on Rolling Linear Guide[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2008, 36(8): 85-88. (In Chinese).
Google Scholar
[28]
Tong Zhongfang, Zhang Jie. Machining Center Column Bed Dynamic Characteristics of the Joint Surface and Parameter Identification [J]. Journal of Vibration and Shock, 1992, 43(3): 13-19, 6. (In Chinese).
Google Scholar
[29]
Zhang Jie, Tong Zhongfang. Machine Fixed Combination of Surface Dynamics Modeling[J]. Journal of Vibration and Shock, 1994, 51(3): 15-22. (In Chinese).
Google Scholar
[30]
Masters B P, Crawley E F. Multiple Degree-of-Freedom Force-State Component Identification[J]. AIAA Journal,1994, 32(11): 2276-2285.
DOI: 10.2514/3.12287
Google Scholar
[31]
Onoda J, Sano T, Minesugi K. Passive Damping of Truss Vibration Using Preloaded Joint Backlash[J]. AIAA Journal, 1995, 33(7): 1335-1341.
DOI: 10.2514/3.12554
Google Scholar
[32]
Mayer M H, Gaul L. Segment-to-Segment Contact Elements for Modelling Joint Interfaces in Finite Element Analysis[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 724-734.
DOI: 10.1016/j.ymssp.2005.10.006
Google Scholar
[33]
Song Yaxin, Michael M D, Bergman L A, et al. Stick-Slip-Slap Interface Response Simulation: Formulation and Application of A General Joint/Interface Element[J]. CMES - Computer Modeling in Engineering and Sciences, 2005, 10(2): 153-170.
Google Scholar
[34]
Sethuraman R,Kumar T S. Finite Element Based Member Stiffness Evaluation of Axisymmetric Bolted Joints[J]. Journal of Mechanical Design, Transactions of the ASME, 2009, 131(1): 110121-1101211.
DOI: 10.1115/1.3042147
Google Scholar
[35]
Nassar S A, Abboud A. An Improved Stiffness Model for Bolted Joints[J]. Journal of Mechanical Design, Transactions of the ASME, 2009, 131(12): 1210011-12100111.
DOI: 10.1115/1.4000212
Google Scholar
[36]
Wu Xiaojian, Jia Baoxian, Liu Yonghong. Computation of Joint Stiffness Parameters of a Specific Structure With a Fixed Joint Surface[J]. Journal of the University of Petroleum, 2000, 24(2): 82-85. (In Chinese).
Google Scholar
[37]
Wu Xiaojian. A Method for Establishing Dynamic Model for Fixed Joints[J]. Mechnical Science and Technology, 2002, 21(3): 439-441. (In Chinese).
Google Scholar
[38]
Wang Shijun,Zhao Jinjuan,Zhang Huijun, et al. A Method of Estimating Normal Stiffness of Joint[J]. Journal of Mechanical Engineering, 2011, 47(21): 111-115, 122. (In Chinese).
Google Scholar
[39]
Tian Hongliang. Dynamic Modeling on Fixed Joint Interface Virtual Material in Mechanical Structure[D]. Huazhong University of Science and Technology. Huazhong University of Science and Technology Library. 2011. (In Chinese).
Google Scholar
[40]
Fritzen Claus-Peter. Identification of Mass, Damping, and Stiffness Matrices of Mechanical Systems[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108(1): 9-16.
DOI: 10.1115/1.3269310
Google Scholar
[41]
Nalitolela N G, Penny J E T, Friswell M I. A Mass or Stiffness Addition Technique for Structural Parameter Updating[J]. International Journal of Analytical and Experimental Modal Analysis, 1992, 7: 157-168.
Google Scholar
[42]
Hjelmstad K D, Wood S L, Clark S J. Mutual Residual Energy Method for Parameter Estimation in Structures[J]. Journal of Structural Engineering, 1992, 118(1): 223-242.
DOI: 10.1061/(asce)0733-9445(1992)118:1(223)
Google Scholar
[43]
Yuan J X, Wu X M. Identification of the Joint Structural Parameters of Machine Tool by DDS and FEM[J]. Journal of Engineering for Industry, 1985, 107(1): 64-69.
DOI: 10.1115/1.3185967
Google Scholar
[44]
Huang Yumei, FU Weiping. Research on the Dynamic Normal Characteristic Parameters of Joint Surface[J]. Chinese Journal of Mechanical Engineering, 1993, 29(3): 74-78. (In Chinese).
Google Scholar
[45]
Huang Yumei, Fu Weiping, Tong Junxian. A Method of Acquiring Applied Tangential Damping Parameters of Joint Surfaces[J]. Journal of Xi'an University of Technology, 1996, 12(1): 1-5.
Google Scholar
[46]
Chen Xin, Liu Zemin, Luo Hong, etc. Based on the Experimental Modal Parameters of the Structure of the Multilayer Integration of Parameter Identification[J]. Journal of Experimental Mechanics, 995, 10(2): 172-180. (In Chinese).
Google Scholar
[47]
Fu Weiping, Huang Yumei, Zhang Xueliang, et al. Experimental Investigation of Dynamic Normal Characteristics of Machined Joint Surfaces[J]. Journal of Vibration and Acoustics, 2000, 122(4): 393-398.
DOI: 10.1115/1.1287589
Google Scholar
[48]
Su Tiexiong, Yang Shiwen, Cui Zhiqin, etc. Review on Dynamic Simulation Model of Complex Structural Joints[J]. Journal of North China Institute of Technology, 2001, 22(3): 218-222. (In Chinese).
Google Scholar
[49]
Zhang Xueling, Tang Yi, Xu Yanshen. A Contact Stiffness Identification Method of Combined Interface by FEM Along with Modal Experiment[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2005, 11: 56-58, 60. (In Chinese).
Google Scholar
[50]
Mottershead J E, Stanway R. Identification of Structural Vibration Parameters by Using a Frequency Domain Filter[J]. Journal of Sound and Vibration, 1986, 109(3): 495-506.
DOI: 10.1016/s0022-460x(86)80385-6
Google Scholar
[51]
J.S. Tsai and Y.F. Chou. The Identification of Dynamic Characteristics of A Single Blot Joint. Journal of Sound and Vibration 1980, 125(3): 487-502.
Google Scholar
[52]
Becker Patricia J Wyatt, Wynn Robert H, Berger Jr Edward. Using Rigid-Body Dynamics to Measure Joint Stiffness[J]. Mechanical Systems and Signal Processing, 1999, 13(5): 789-801.
DOI: 10.1006/mssp.1999.1232
Google Scholar
[53]
Zhang Guangpeng, Shi Wenhao, Huang Yumei. Analysis Method of Dynamic Behaviors of Guideway Joint and Its Application in Machine Tools Design[J]. Chinese Journal of Mechnical Engineering, 2002, 38(10): 114-117. (In Chinese).
DOI: 10.3901/jme.2002.10.114
Google Scholar
[54]
Zhang Guangpeng, Shi Wenhao, Huang Yumei, etc. Modeling and Analysis Method of Dynamical Characteristics for A Whole Machine Tool Structure[J]. Journal of Shanghai Jiaotong University, 2001, 35(12): 1834-1837. (In Chinese).
Google Scholar
[55]
Li Ling, Cai Ligang. Normal Equivalent Properties of the Bolted Joints in Different Preload [J]. Journal of Beijing University of Technology, 2013, 39(05): 660-665. (In Chinese).
Google Scholar
[56]
Cai Ligang, Li Ling. Identification of Nonlinear Joint Parameters with Force-State Mapping Method [J]. Journal of Mechanical Engineering, 2011, 47(07): 65-72. (In Chinese).
DOI: 10.3901/jme.2011.07.065
Google Scholar
[57]
Mayer M H, Gaul L. Segment-to-Segment Contact Elements for Modeling Joint Interfaces in Finite Element Analysis[J]. Mechanical Systems and Signal Processing, 2007, 21(2): 724-734.
DOI: 10.1016/j.ymssp.2005.10.006
Google Scholar
[58]
Goodman Richard E, Taylor Robert L, Brekke Tor L. A Model for the Mechanics of Jointed Rock[J]. Journal of the Soil Mechanics and Foundations Division: Processing of the American Society of Civil Engineers, 1968, 94(3): 637-659.
DOI: 10.1061/jsfeaq.0001133
Google Scholar
[59]
Vasilescu Mircea S. A Model for the Mechanics of Jointed Rock[J]. Journal of the Soil Mechanics and Foundations Division: Processing of the American Society of Civil Engineers, 1969, 95(3): 899-900.
DOI: 10.1061/jsfeaq.0001294
Google Scholar
[60]
Zhang Xueliang, Wen Shuhua, Xu Gening, et al. Fractal Model of the Tangential Contact Stiffness of Machined Surfaces in Contact[J]. Chinese Journal of Applied Mechanics, 2003, 20(1): 70-72. (In Chinese).
Google Scholar
[61]
Zhang Xueliang, Wen Shuhua, Lan Guosheng, et al. Fractal Model for Tangential Contact Damping of Plane Joint Interfaces with Simulation[J]. Journal of Xi'an Jiaotong University, 2011, 45(5): 74-77. (In Chinese).
Google Scholar
[62]
Zhang Xueliang, Wen Shuhua. A Fractal Model of Tangential Contact Stiffness of Joint Surfaces Based on the Contact Fractal Theory[J]. Journal of Agricultural Machinery, 2002, 33(03): 91-93. (In Chinese).
Google Scholar
[63]
Zhang Xueliang, Huang Yumei, Wen Shuhua. Fractal Model of Contact Stiffness of Joint Surfaces[J]. Transactions of The Chinese Society of Agricultural Machinery, 2000, 31(04): 89-91. (In Chinese).
Google Scholar
[64]
Zhang Xueliang, Huang Yumei, Han Ying. Fractal Model of the Normal Contact Stiffness of Machine Joint Surfaces Based on the Fractal Contact Theory[J]. China Mechnical Engineering, 2000, 11(07): 15-17. (In Chinese).
Google Scholar
[65]
Zhang Xueliang, Huang Yumei, Fu Weiping, etc. Fractal Model of Normal Contact Stiffness between Rough Surfaces[J]. Chinese Journal of Applied Mechanics, 2000, 17(02): 31-35. (In Chinese).
Google Scholar
[66]
LI Yinong, Zheng Ling, Wen Bangchun. Nonlinear Model of Bolted Joint and Its Wave Energy Dissipation[J]. Journal of Vibration Engineering, 2003, 16(2): 5-10. (In Chinese).
Google Scholar