On Improved Delay-Range-Dependent Stability Criteria for Linear Systems with Interval Time-Varying Delay

Article Preview

Abstract:

In this paper, we consider the problem of robust delay-dependent stability for a class of linear uncertain systems with interval time-varying delay. By using the directly Lyapunov-Krasovskii (L-K) functional method, integral inequality approach and the free weighting matrix technique, new less conservative stability criteria for the system is formulated in terms of linear matrix inequalities .Numerical examples are given to show the effectiveness of the proposed approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1306-1310

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gu K, Kharitonov V L, Chen J. Stability of time-delay systems [M]. Basel: Birkhauser, 2003: 1-17.

Google Scholar

[2] H. Gao, T. Chen, J. Lam. A new delay system approach to network-based control [J], Automatica, Vol. 44 (1), (2008) , pp.39-52.

DOI: 10.1016/j.automatica.2007.04.020

Google Scholar

[3] Y. He, Q. Wang, C. Lin, et al. Delay-range-dependent stability for systems with time-varying delay. Automatica, Vol. 43(2), ( 2007), pp.371-376.

DOI: 10.1016/j.automatica.2006.08.015

Google Scholar

[4] W. Zhang, X. S. Cai, Z. Z. Han. Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. Journal of Computational and Applied Mathematics, Vol. 234(1), (2010), pp.174-180.

DOI: 10.1016/j.cam.2009.12.013

Google Scholar

[5] GU K.: An integral inequality in the stability problem of time-delay systems,. Proc. 39th IEEE Conf. on Decision and Control, 2000, pp.2805-2810.

Google Scholar

[6] H. Y. Shao. New delay-dependent stability criteria for systems with interval delay [J]. Automatica, Vol, 45(3), (2009), 744-749.

DOI: 10.1016/j.automatica.2008.09.010

Google Scholar

[7] Q L. Han Absolute stability of time-delay systems with sector-bounded nonlinearity [J]. Automatica, Vol. 41(12), (2005), pp.2171-2176.

DOI: 10.1016/j.automatica.2005.08.005

Google Scholar

[8] X. -L Zhu, Y. Wang, G. -H Yang. New stability criteria for continuous-time systems with interval time-varying delay [J], IET Control Theory and Applications, Vol. 4(6), (2010) , pp.1101-1107.

DOI: 10.1049/iet-cta.2009.0176

Google Scholar

[9] O.M. Kwon, J.H. Park, S.M. Lee, An improved delay-dependent criterion for asymptotic stability of uncertain dynamic systems with time-varying delays[J], Journal of Optimization Theory and Applications. Vol. 145(2)(2010), pp.343-353.

DOI: 10.1007/s10957-009-9637-x

Google Scholar

[10] C. Peng, Y. Tian. Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. IET Control Theory and Application, Vol. 2(9), (2008) , pp.752-761.

DOI: 10.1049/iet-cta:20070362

Google Scholar

[11] K. Ramakrishnan, G. Ray. Delay-dependent robust stability criteria for linear uncertain systems with interval time varying delay. TENCON 2009-2009 IEEE Region 10 Conference. Singapore: IEEE, 2009, 5396259.

DOI: 10.1109/tencon.2009.5396259

Google Scholar

[12] K. Ramakrishnan, G. Ray . Robust stability criteria for uncertain linear systems with interval time-varying delay [J], Journal of Control Theory and Applications, Vol. 9 (4), ( 2011), 559-566.

DOI: 10.1007/s11768-011-9131-5

Google Scholar

[13] D. Yue, D. Tian, Y. Zhang. A piecewise analysis method to stability analysis of continuous/discrete systems with time-varying delay[J], International Journal Robust Nonlinear Control, Vol, 19(13), (2009) , 1493-1518.

DOI: 10.1002/rnc.1399

Google Scholar