[1]
Feng T, Li S Z, Shum H Y, et al. Local Non-negative Matrix Factorization as a Visual Representation[C]/Proceedings of the 2nd International Conference on Development and Learning. (2002).
DOI: 10.1109/devlrn.2002.1011835
Google Scholar
[2]
A. Broumandnia, M. Fathi, Application of pattern recognition for Farsi license plate recognition, ICGST-GVIP Journal, Volume 5, Issue2, Jan. (2005).
Google Scholar
[3]
Ali Broumandnia, Jamshid Shanbehzadeh, Fast Zernike wavelet moments for Farsi character recognition, Image and Vision Computing 25 (2007) 717–726.
DOI: 10.1016/j.imavis.2006.05.014
Google Scholar
[4]
Giannoukos, I. , Anagnostopoulos, C. -N., Loumos, V., Kayafas, E. , Operator context scanning to support high segmentation rates for real time license plate recognition, Pattern Recognition, Volume 43, Issue 11, 2010, Pages 3866-3878.
DOI: 10.1016/j.patcog.2010.06.008
Google Scholar
[5]
Nastar C, Ayache N. Frequency-based Non-rigid Motion Analysis[J]. IEEE Trans. on PAMI, 1996, 18(11): 1067-1079.
Google Scholar
[6]
Daubechies I, Sweldens W. Factoring Wavelet Transforms into Lifting Steps[J]. Journal of Fourier Analysis and Application, 1998, 4(3).
DOI: 10.1007/bf02476026
Google Scholar
[7]
Shapiro, V., Gluhchev, G., Dimov, D. Towards a multinational car license plate recognition system, (2006) Machine Vision and Applications, 17 (3), pp.173-183.
DOI: 10.1007/s00138-006-0023-5
Google Scholar
[8]
Sweldens W. The Lifting Scheme: A Custom-design Construction of Biorthogonal Wavelets[J]. Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200.
DOI: 10.1006/acha.1996.0015
Google Scholar
[9]
M. Sezgin and B. Sankur (2004). Survey over image thresholding techniques and quantitative performance evaluation,. Journal of Electronic Imaging 13 (1): 146–165.
DOI: 10.1117/1.1631315
Google Scholar
[10]
Lee D, Seung H S. Learning the Parts of Objects by Non-negative Matrix Factorization[J]. Nature, 1999, 401(6755): 788-791.
DOI: 10.1038/44565
Google Scholar
[11]
J.M. Guo and Y.F. Liu, License Plate Localization and Character Segmentation With Feedback Self-Learning and Hybrid Binarization Techniques, IEEE transaction on vehicular technology, Vol. 57, No. 3, 2008, 1417-1424.
DOI: 10.1109/tvt.2007.909284
Google Scholar