Contents Based Color Image Edge Detection Using Hessian Matrix

Article Preview

Abstract:

The edges are the most fundamental and important characteristic of an image, edge detection is the key link and classic topic in machine vision and image processing. Considering the human visual characteristics, the intrinsic gradient direction information of color images was used to obtain the pseudo-color edges of the images by conducting multichannel edge detection. After enhancing the edge information and removing the correlation, the brightness is extracted in order to obtain complete image edge information. To make the edges more smooth and continuous, the Hessian matrix is used to remove coarse edges and edges with redundant background texture. The experiment verifies the effectiveness of the proposed algorithm, and the comparison with other scheme indicates that our scheme can improve the effectiveness, continuity and sharpness of edge detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1853-1860

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu W, Ma Z. Wavelet image threshold denoising based on edge detection[C]/Computational Engineering in Systems Applications, IMACS Multiconference on. IEEE, 2006, 1: 72-78.

DOI: 10.1109/cesa.2006.4281626

Google Scholar

[2] Wu J, Yin Z, Xiong Y. The fast multilevel fuzzy edge detection of blurry images[J]. Signal Processing Letters, IEEE, 2007, 14(5): 344-347.

DOI: 10.1109/lsp.2006.888087

Google Scholar

[3] Yang Hong-ying, Wu Jun-feng, Yu Yong-jian, Wang Xiang-yang. Content Based Image Retrieval Using Color Edge Histogram in HSV Color Space[J]. Journal of image and graphics , 2008, 13(10): 2036-(2038).

DOI: 10.4018/978-1-59140-156-8.ch005

Google Scholar

[4] Yu Ye, Lu Jian-hua, Zheng Jun-li, Color image edge detection algorithm[J]. Journal of Tsinghua University, 2005, 45(10): 1339-1343.

Google Scholar

[5] McIlhagga W. The Canny edge detector revisited[J]. International Journal of Computer Vision, 2011, 91(3): 251-261.

DOI: 10.1007/s11263-010-0392-0

Google Scholar

[6] Vincent O R, Folorunso O. A descriptive algorithm for sobel image edge detection[C]/Proceedings of Informing Science & IT Education Conference (InSITE). 2009: 97-107.

DOI: 10.28945/3351

Google Scholar

[7] Jiang W, Lam K M, Shen T Z. Efficient edge detection using simplified Gabor wavelets[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2009, 39(4): 1036-1047.

DOI: 10.1109/tsmcb.2008.2011646

Google Scholar

[8] Liu Qing, Lin Tu-sheng. Image edge detection algorithm based on mathematical morphology[J]. Journal of South China University of Technology(Natural Science Edition) , 2008, 36(9): 113-116, 121.

Google Scholar

[9] Du Ya-qin, Hong Bo, Guo Lei, Yang Ning. Novel curve fitting edge feature extraction algorithm[J] Journal of Xidian University(Natural Science Edition) , 2011, 38(3): 164-168, 188.

Google Scholar

[10] Li Guang-Ming, Tian Jie, Zhao Ming-chang, He Hui-guang. Centerline extraction based on hessian matrix[J]Journal of software, 2003, 14(12): 2074-(2081).

Google Scholar

[11] Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering[M]/Medical Image Computing and Computer-Assisted Interventation—MICCAI'98. Springer Berlin Heidelberg, 1998: 130-137.

DOI: 10.1007/bfb0056195

Google Scholar

[12] Duan Qun, Liu Xiao-yu, Wu Fen-xia. An approach for image enhancement based on high frequency emphasize filter and histogram equalization[J] Computer technology and automation, 2009, 28(2): 95-97, 110.

Google Scholar

[13] Xiao F, Zhou M, Geng G. Detail enhancement and noise reduction with true color image edge detection based on wavelet multi-scale[C]/Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on. IEEE, 2011: 1061-1064.

DOI: 10.1109/aimsec.2011.6010635

Google Scholar

[14] Zhou P, Ye W, Xia Y, et al. An Improved Canny Algorithm for Edge Detection[J]. Journal of Computational Information Systems, 2011, 7(5): 1516-1523.

Google Scholar

[15] Jiang W, Lam K M, Shen T Z. Efficient edge detection using simplified Gabor wavelets[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2009, 39(4): 1036-1047.

DOI: 10.1109/tsmcb.2008.2011646

Google Scholar

[16] Lin Hui, Zhao Chang-sheng, Shu Ning. Edge detection based on Canny operator and evaluation[J] Journal of Heilongjiang Institute of Technology, 2003, 17(2): 3-6.

Google Scholar

[17] Chen X, Chen H. A novel color edge detection algorithm in RGB color space[C]/Signal Processing (ICSP), 2010 IEEE 10th International Conference on. IEEE, 2010: 793-796.

DOI: 10.1109/icosp.2010.5655926

Google Scholar