Effect of Electrode Size on Signal Attenuation in Intra-Body Communication

Article Preview

Abstract:

In the galvanic coupling intra-body communication, transmitting and receiving of signals require coupling between electrodes and human tissue. Electrode size has a direct effect upon signal attenuation so as to influence signal transmission. To analyze the exact effect of electrode size on signal attenuation, the volume conductor model of human forearm is built with COMSOL Multiphysics 4.2a.It can be found from the simulation experiment that, signal attenuation declines with the increase of electrode size, which lays the foundation for subsequent experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2029-2032

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. G. Zimmerman. Personal Area Networks (PAN): Near-Field Intra-Body Communication: [Master Thesis]. USA: Massachusetts Institute of Technology, (1995).

Google Scholar

[2] T. G. Zimmerman. Personal Area Networks: Near-field intrabody communication. IBM Systems Journals, 1996. 35: 609-617.

DOI: 10.1147/sj.353.0609

Google Scholar

[3] Shuang Zhang , Yu ping Qin, Peng Un MAK , Sio Hang PUN, Mang I VAI. Real-time medical monitoring system design based on intra-body communication. Journal of Theoretical and Applied Information Technology. 2013. 47(2): 649 – 652.

DOI: 10.1109/issnip.2008.4761999

Google Scholar

[4] Wu Chen, Shuang Zhang, Yu-ping Qin, Pailla Tejaswy. Overview of Intra-body Communication Research. Journal of Convergence Information Technology. 2012. 7(20): 226-233.

Google Scholar

[5] M. S. Wegmuller. Intra-Body Communication (IBC) for Biomedical Sensor Networks. [PhD Thesis]. Switzerland: ETH, (2007).

Google Scholar

[6] K. Hachisuka, T. Takeda, Y. Terauchi, et al. Intra-body data transmission for the personal area network.Microsyst. Technol. , 2005. 1020-1027.

DOI: 10.1007/s00542-005-0500-1

Google Scholar

[7] K. Hachisuka, Y. Terauchi, Y. Kishi, et al. Simplified circuit modeling and fabrication of intrabody communication devices. Sensors and Actuators,2006.322-330.

DOI: 10.1016/j.sna.2006.04.044

Google Scholar

[8] M. S. Wegmueller, A. Kuhn, J. Froehlich, et al. An Attempt to Model the Human Body as a Communication Channel. IEEE Transactions on Biomedical Engineering, 2007. 54(10): 1851~1857.

DOI: 10.1109/tbme.2007.893498

Google Scholar

[9] S. H. Pun;Y. M. Gao; P. U. Mak; M. I Vai ; M. Du. Quasi-Static Modeling of Human Limb for Intra-Body Communication (IBC)s With Experiments. IEEE Transactions on Information Technology in Biomedicine, 2011. 15(6): 870~876.

DOI: 10.1109/titb.2011.2161093

Google Scholar

[10] Xi Mei Chen , Peng Un Mak , Sio Hang Pun , Yue Ming Gao , Chan-Tong Lam , Mang I. Vai , and Min Du. Study of Channel Characteristics for Galvanic-Type Intra-Body Communication Based on a Transfer Function from a Quasi-Static Field Model. Sensors 2012, 12, 16433-16450.

DOI: 10.3390/s121216433

Google Scholar

[11] GEDDES, L. A. and BAKER, L. E. The specific resistance of biological material. A compendium of data for the biomedical engineer and physiologist. Med. & Biol. Eng. . 1967. 5: 271-293.

DOI: 10.1007/bf02474537

Google Scholar

[12] DIMITROY, G. and DIMITROVA, N. Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor. Electromyogr. Clin. Neurophysiol. . 1974. 14: 423-436.

Google Scholar

[13] F. L. H. Gielen, W. Wallinga-de Jonge,K. L. Boon. electrical coductivty of skeletal muscle tissue: experimental results from different muscles in vivo. Medical & Biological Engineering & Computing. 1984. 22: 569-577.

DOI: 10.1007/bf02443872

Google Scholar

[14] S. Gabriel, R. W. Lau. C. Gabriel. the dielectric properties of biological tissues: II. measurements in the frequency rang 10Hz to 20GHz. Phys. Med. Biol. 1996. 41. 2251-2269.

DOI: 10.1088/0031-9155/41/11/002

Google Scholar

[15] R. Plonsey and E. B. Heppner, Considerations of quasi-stationarity in electrophysiological systems, Bulletin of mathematical biophysics. 1967 29: 657–664.

DOI: 10.1007/bf02476917

Google Scholar

[16] R. Plonsey, Volume conductor theory, in The biomedical engineering handbook (J. D. Bronzino, ed. ), Boca Raton: CRC Press LLC, (2000).

Google Scholar

[17] J. Malmivuo and R. Plonsey, Bioelectromagnetism. New York: Oxford University Press, (1995).

Google Scholar