[1]
T. G. Zimmerman. Personal Area Networks (PAN): Near-Field Intra-Body Communication: [Master Thesis]. USA: Massachusetts Institute of Technology, (1995).
Google Scholar
[2]
T. G. Zimmerman. Personal Area Networks: Near-field intrabody communication. IBM Systems Journals, 1996. 35: 609-617.
DOI: 10.1147/sj.353.0609
Google Scholar
[3]
Shuang Zhang , Yu ping Qin, Peng Un MAK , Sio Hang PUN, Mang I VAI. Real-time medical monitoring system design based on intra-body communication. Journal of Theoretical and Applied Information Technology. 2013. 47(2): 649 – 652.
DOI: 10.1109/issnip.2008.4761999
Google Scholar
[4]
Wu Chen, Shuang Zhang, Yu-ping Qin, Pailla Tejaswy. Overview of Intra-body Communication Research. Journal of Convergence Information Technology. 2012. 7(20): 226-233.
Google Scholar
[5]
M. S. Wegmuller. Intra-Body Communication (IBC) for Biomedical Sensor Networks. [PhD Thesis]. Switzerland: ETH, (2007).
Google Scholar
[6]
K. Hachisuka, T. Takeda, Y. Terauchi, et al. Intra-body data transmission for the personal area network.Microsyst. Technol. , 2005. 1020-1027.
DOI: 10.1007/s00542-005-0500-1
Google Scholar
[7]
K. Hachisuka, Y. Terauchi, Y. Kishi, et al. Simplified circuit modeling and fabrication of intrabody communication devices. Sensors and Actuators,2006.322-330.
DOI: 10.1016/j.sna.2006.04.044
Google Scholar
[8]
M. S. Wegmueller, A. Kuhn, J. Froehlich, et al. An Attempt to Model the Human Body as a Communication Channel. IEEE Transactions on Biomedical Engineering, 2007. 54(10): 1851~1857.
DOI: 10.1109/tbme.2007.893498
Google Scholar
[9]
S. H. Pun;Y. M. Gao; P. U. Mak; M. I Vai ; M. Du. Quasi-Static Modeling of Human Limb for Intra-Body Communication (IBC)s With Experiments. IEEE Transactions on Information Technology in Biomedicine, 2011. 15(6): 870~876.
DOI: 10.1109/titb.2011.2161093
Google Scholar
[10]
Xi Mei Chen , Peng Un Mak , Sio Hang Pun , Yue Ming Gao , Chan-Tong Lam , Mang I. Vai , and Min Du. Study of Channel Characteristics for Galvanic-Type Intra-Body Communication Based on a Transfer Function from a Quasi-Static Field Model. Sensors 2012, 12, 16433-16450.
DOI: 10.3390/s121216433
Google Scholar
[11]
GEDDES, L. A. and BAKER, L. E. The specific resistance of biological material. A compendium of data for the biomedical engineer and physiologist. Med. & Biol. Eng. . 1967. 5: 271-293.
DOI: 10.1007/bf02474537
Google Scholar
[12]
DIMITROY, G. and DIMITROVA, N. Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor. Electromyogr. Clin. Neurophysiol. . 1974. 14: 423-436.
Google Scholar
[13]
F. L. H. Gielen, W. Wallinga-de Jonge,K. L. Boon. electrical coductivty of skeletal muscle tissue: experimental results from different muscles in vivo. Medical & Biological Engineering & Computing. 1984. 22: 569-577.
DOI: 10.1007/bf02443872
Google Scholar
[14]
S. Gabriel, R. W. Lau. C. Gabriel. the dielectric properties of biological tissues: II. measurements in the frequency rang 10Hz to 20GHz. Phys. Med. Biol. 1996. 41. 2251-2269.
DOI: 10.1088/0031-9155/41/11/002
Google Scholar
[15]
R. Plonsey and E. B. Heppner, Considerations of quasi-stationarity in electrophysiological systems, Bulletin of mathematical biophysics. 1967 29: 657–664.
DOI: 10.1007/bf02476917
Google Scholar
[16]
R. Plonsey, Volume conductor theory, in The biomedical engineering handbook (J. D. Bronzino, ed. ), Boca Raton: CRC Press LLC, (2000).
Google Scholar
[17]
J. Malmivuo and R. Plonsey, Bioelectromagnetism. New York: Oxford University Press, (1995).
Google Scholar