[1]
E. Gustafsson, and A. J. Jonsson. Always best connected. IEEE Wireless Commun. vol. 10(1), pp.49-55, Feb (2003).
DOI: 10.1109/mwc.2003.1182111
Google Scholar
[2]
T. B. Zahariadis, K. D. Vaxevankis, and C. P. Tsantilas. Global roaming in next-generation networks. IEEE Commun. Mag. vol. 40(2), pp.145-151, Feb (2002).
DOI: 10.1109/35.983921
Google Scholar
[3]
G. Fodor, A. Eriksson, and A. Tuoriniemi. Providing quality of service in always best connected networks. IEEE Commun. Mag. vol. 41(7), pp.154-163, July (2003).
DOI: 10.1109/mcom.2003.1215652
Google Scholar
[4]
B. Briscoe, and V. Oliver. A market managed multi-service Internet. Comput. Commun. vol. 26(4), pp.404-414, Feb (2003).
Google Scholar
[5]
Z. Wang, J. Crowcroft. Quality of service routing for supporting multimedia applications. IEEE J. Sel. Areas Commun. vol. 14(7), pp.1288-1294, Sep (1996).
DOI: 10.1109/49.536364
Google Scholar
[6]
M. Heydarian. A high performance optimal dynamic routing algorithm with unicast multichannel QoS guarantee in communication systems. J. Supercomput. Vol. 63(1), pp.315-344, Jan (2012).
DOI: 10.1007/s11227-011-0723-0
Google Scholar
[7]
P. Khadivi, S. Samavi, and T. Todd. Multi-constraint QoS routing using a new single mixed metrics. Journal of Network and Computer Applications. vol. 31(4), pp.656-676, Jun (2004).
DOI: 10.1016/j.jnca.2007.11.004
Google Scholar
[8]
Nie, R., Zhou, D., Zhao, D. and Tan, Y. 2010. CPCNN and its application to multiple constrained QoS route. J. Commun. 31, 1 (Jan. 2010), 65-72.
Google Scholar
[9]
X. Wang, R. Sun, and M. Huang. organizational evolution-based ABC supported unicast routing scheme. Computer Science. Vol. 38(10), pp.34-38, Oct (2011).
Google Scholar
[10]
Q. Du, J. Zhu, and E. Zhang. A novel ant-colony optimized QoS routing algorithm based on multiple transferring strategies for tactical MANETs. Journal of National University of Defense Technology. vol. 34(1), pp.107-114, Feb (2012).
Google Scholar
[11]
X. Wang, R. Zou, and M. Huang. A flexible QoS unicast routing scheme based on utility and QGA. Computer engineering & Science. Vol. 32(2), pp.1-2, (2010).
Google Scholar
[12]
K. Yang, and Y. Wu. QoS-aware routing in emerging heterogeneous wireless networks. IEEE Commun. Mag. Vol. 45(2), pp.74-80, Feb (2007).
DOI: 10.1109/mcom.2007.313398
Google Scholar
[13]
G. L. Xue, A. Sen, and W. Zhang. Finding a path subject to many additive QoS constraints. IEEE / ACM Transactions on Networing. Vol. 15(1), pp.201-211, Feb (2007).
DOI: 10.1109/tnet.2006.890089
Google Scholar
[14]
X. Wang, J. Wang, and M. Huang. A hunting search based trust worthy QoS routing algorithm. Journal of Northeastern University. Vol. 33(10), pp.1385-1389, Oct (2012).
Google Scholar
[15]
A. Ye, and J. Wu. A Novel Particle Swarm Algorithm to Optimize QoS Unicast Routing. Advanced Materials Research. Vol. 230-232, pp.377-383, May (2011).
DOI: 10.4028/www.scientific.net/amr.230-232.377
Google Scholar
[16]
R. Leela, N. Thanulekshmi. S. Selvakumar. Multi-constraint Qos Unicast Routing Using Genetic Algorithm (MURUGA). Applied Soft Computing Journal. Vol. 11(2), pp.1753-1761, Mar (2011).
DOI: 10.1016/j.asoc.2010.05.018
Google Scholar
[17]
Mohamed. A, Adel. B, Rion. M, Habib. Y, and Abdelfettah. B. A new scalable multicast routing algorithm for interactive real-time applications [J]. Personal and Ubiquitous Computing. Vol . 15, pp.833-844, (2011).
DOI: 10.1007/s00779-011-0370-8
Google Scholar
[18]
Rabindra. G, Seshadri. M. A token-based routing mechanism for GMPLS-controlled WDM networks. Optical Switching and Networking. vol. 9, pp.170-178, (2012).
DOI: 10.1016/j.osn.2011.11.003
Google Scholar
[19]
N. Ali, H. Michael, and W. Ning. An ISP and End-User Cooperative Intradomain Routing Algorithm . 2012 IEEE Symposium on Computers and Communications. (2012).
DOI: 10.1109/iscc.2012.6249310
Google Scholar
[20]
M. Damanafshan, E. Khosrowshahi-Asl, and M. Abbaspour. GASANT: An ant-inspired least-cost QoS multicast routing approach based on genetic and simulated annealing algorithms. International Journal of Computers Communications & Control. vol. 3, pp.417-431, (2012).
DOI: 10.15837/ijccc.2012.3.1384
Google Scholar
[21]
D. Zhang, and S. Huang. An improved elistist distance-based pareto genetic algorithm. Control and Decision. Vol. 19(4), pp.465-467, Apr (2004).
Google Scholar
[22]
D. Xiao, J. Feng, and Q. Zhou. Gauss reputation framework for senor networks, J. Commun. Vol. 29(3), pp.47-53, Mar (2008).
Google Scholar
[23]
Q. Shi. Game theory. 2000. ShangHai: Shanghai University of Finance Economics Pres. 11-81.
Google Scholar
[24]
Z. Li. A necessary and sufficient condition of distinguishing pure strategy Nash equilibrium existence in static games. Journal of AnHui University. Vol. 28(6), pp.10-14, Nov 2004.
Google Scholar
[25]
D. Kalyanmoy. Multi-objective optimization using evolutionary algorithms. Chichester, U.K.: Wiley. pp.241-249.
Google Scholar
[26]
D. Lei, and Z. Wu. Crowding Measure Based Multi_Objective Evolutionary Algorithm. Chinese Journal of Computers. Vol. 28(8), pp.1320-1326, Aug (2005).
Google Scholar
[27]
L. Xu, B. Pang, and Y. Zhao. NS and Network Simulation. Post & Telecom Press. pp.1-9.
Google Scholar
[28]
E. W. Dijkstra. A note on two problems in connection with graph. Numerical Mathematics. Vol. 1(5), pp.269-271, Jan (1959).
Google Scholar