[1]
Hsieh C H, Wu T L, Cheng W H. An optimum approach for fabrication of low loss fused fiber couplers [J]. Materials Chemistry and Physics, 2001, 69(7): 199-203.
DOI: 10.1016/s0254-0584(00)00397-7
Google Scholar
[2]
Eisenmann M, Weidel E. Siggle-Mode fused biconical couplers for wavelength division multiplexing with channel spacing between 100 and 300 nm[J]. Journal of Lightwave Technology, 1988, 6(1): 113-119.
DOI: 10.1109/50.3975
Google Scholar
[3]
B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 26, 1469 (2001).
Google Scholar
[4]
A. W. Snyder. Coupled-mode Theory for Optical Fibers[J]. Opt, Soc. Amer. Vol, 1972, 62: 1267-1277.
Google Scholar
[5]
Fang Hong, Lou Shuqin, Guo Tieying, Jian Shuisheng. Novel-High Birefringence Photonic Crystal Fiber [J]. Acta Optica Sinica, 2007, 27(2): 202-206.
DOI: 10.1109/aoe.2007.4410812
Google Scholar
[6]
Gong Taorong. Analysis of Properties of High Birefringence Photonic Crystal Fibers [J]. Chinese Journal of Lasers,2008, 35(4): 559-562.
Google Scholar
[7]
A. Takagi, K. Jinguji, M. Kawachi. Broadband silica-based optical waveguide coupler with asymmetric structure[J]. Electron Lett, 1990, 26: 132-133.
DOI: 10.1049/el:19900090
Google Scholar
[8]
A. Takagi, K. Jinguji, M. Kawachi. Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure[J]. IEEE. Quantum Elec, 1992, 28, 848-855.
DOI: 10.1109/3.135202
Google Scholar
[9]
Fangdi Zhang, Xiaoyi Liu, Min Zhanget al, A novel design forsingle-polarization single-mode photonic crystal fiber at 1550 nm. Chin. Opt. Lett . (2007).
Google Scholar
[10]
K Saitoh, M Koshiba. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers[J]. IEEE Journal of Quantum Electronics, 2002, 38: 927-933.
DOI: 10.1109/jqe.2002.1017609
Google Scholar