New Mapping Solutions and Line Soliton Excitations in a (1+1)-Dimensional Dispersive Long-Water Wave System

Article Preview

Abstract:

With the help of the symbolic computation system Maple and the mapping approach and a linear variable separation approach, a new family of exact solutions of the (1+1)-dimensional dispersive long-water wave system (DLWW) is derived. Based on the derived solitary wave solution, some novel localized excitations are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-121

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Fang, C.L. Zheng, J.M. Zhu and Q.B. Ren: New family of excit solutions and chaotic solitons of generalized Breor-Kaup system in (2+1)-dimensions via an extended mapping approach. Commun Theor Phys(2005)44(2): 203-208.

DOI: 10.1088/6102/44/2/203

Google Scholar

[2] S.Y. Lou and X.B. Hu: Infinitely Many Lax Pairs and Symmetry Constraints of the KP Equation. Journal of Mathematical Physics(1997)38(6): 183-189.

DOI: 10.1063/1.532219

Google Scholar

[3] M.B. Abd-el-Malek and M.M. Helal: Characteristic Function Method for Classification of Equations of Hydrodynamics of a Perfect Luid, Journal of Computational and Applied Mathematics(2005)182(1): 105-116.

DOI: 10.1016/j.cam.2004.11.042

Google Scholar

[4] S. Wang, X.Y. Tang and S.Y. Lou: Soliton Fission and Fusion: Burgers Equation and Sharma-Tasso-Olver Equation, Chaos, Solitons and Fractals(2004)19(1): 231-239.

DOI: 10.1016/j.chaos.2003.10.014

Google Scholar

[5] S.H. Ma, J.P. Fang and C.L. Zheng: Folded Locailzed Excitations and Chaotic Patterns in a (2+1)-Dimensional Soliton System, Z. Naturforsch A(2008)62(1): 121-126.

DOI: 10.1515/zna-2008-3-401

Google Scholar

[6] S.H. Ma, J.Y. Qiang and J.P. Fang: The Interaction between Solitons and Chaotic Behaviours of (2+1)-Dimensional Boiti-Leon-Pempinelli System, Acta Physics Sinica(2007)56(2): 620-626.

DOI: 10.7498/aps.56.620

Google Scholar

[7] S.H. Ma, J. P. Fang and H. P. Zhu, Dromion Soliton Waves and the Their Evolution in the Background of Jacobi Sine Waves, Acta Physics Sinica, Vol. 56, No. 8, pp.4319-4325, (2007).

DOI: 10.7498/aps.56.4319

Google Scholar

[8] S.H. Ma, J.P. Fang and C.L. Zheng: Complex wave excitations and chaotic patterns for a generalized (2+1)-dimensional korteweg de-vries system. Chin. Phys B (2008) 17(08): 2767-2773.

DOI: 10.1088/1674-1056/17/8/004

Google Scholar

[9] S.H. Ma, X.H. Wu, J.P. Fang and C.L. Zheng: New exact solutions for the (3+1)-Dimensional Jimbo-Miwa System. Chaos, Solitons and Fractals(2009)40(3): 1352-135.

DOI: 10.1016/j.chaos.2007.09.012

Google Scholar

[10] L.J.F. Broer: Approximate Equations for Long Water Waves. Applied Scientzlfic Research (1975)31(5): 377-395.

Google Scholar

[11] D.J. Kaup: Finding Eigenvalue Problems for Solving Nonlinear Evolution Equations. Progress of Theoretical Physics (1975)54(1): 72 -78.

DOI: 10.1143/ptp.54.72

Google Scholar

[12] L. Martinez: Schrodinger Spectral Problems with Energy - Dependent Potentials as Sources of Nonlinear Hamiltonian Evolution Equations. Journal of Mathematical Physics(1980) 21(9): 2342-2349.

DOI: 10.1063/1.524690

Google Scholar

[13] B.A. Kupershmidt: Mathematics of Dispersive Water Waves. Communications in Mathematical Physics(1985)99(1): 51-73.

DOI: 10.1007/bf01466593

Google Scholar

[14] M.M. Helal, M.L. Mekky, E.A. Mohamed: The Characteristic Function Method and Its Application to (1+l)-Dimensional Dispersive Long Wave Equation. Applied Mathematics(2012)3(1): 12-18.

DOI: 10.4236/am.2012.31002

Google Scholar