[1]
J.P. Fang, C.L. Zheng, J.M. Zhu and Q.B. Ren: New family of excit solutions and chaotic solitons of generalized Breor-Kaup system in (2+1)-dimensions via an extended mapping approach. Commun Theor Phys(2005)44(2): 203-208.
DOI: 10.1088/6102/44/2/203
Google Scholar
[2]
S.Y. Lou and X.B. Hu: Infinitely Many Lax Pairs and Symmetry Constraints of the KP Equation. Journal of Mathematical Physics(1997)38(6): 183-189.
DOI: 10.1063/1.532219
Google Scholar
[3]
M.B. Abd-el-Malek and M.M. Helal: Characteristic Function Method for Classification of Equations of Hydrodynamics of a Perfect Luid, Journal of Computational and Applied Mathematics(2005)182(1): 105-116.
DOI: 10.1016/j.cam.2004.11.042
Google Scholar
[4]
S. Wang, X.Y. Tang and S.Y. Lou: Soliton Fission and Fusion: Burgers Equation and Sharma-Tasso-Olver Equation, Chaos, Solitons and Fractals(2004)19(1): 231-239.
DOI: 10.1016/j.chaos.2003.10.014
Google Scholar
[5]
S.H. Ma, J.P. Fang and C.L. Zheng: Folded Locailzed Excitations and Chaotic Patterns in a (2+1)-Dimensional Soliton System, Z. Naturforsch A(2008)62(1): 121-126.
DOI: 10.1515/zna-2008-3-401
Google Scholar
[6]
S.H. Ma, J.Y. Qiang and J.P. Fang: The Interaction between Solitons and Chaotic Behaviours of (2+1)-Dimensional Boiti-Leon-Pempinelli System, Acta Physics Sinica(2007)56(2): 620-626.
DOI: 10.7498/aps.56.620
Google Scholar
[7]
S.H. Ma, J. P. Fang and H. P. Zhu, Dromion Soliton Waves and the Their Evolution in the Background of Jacobi Sine Waves, Acta Physics Sinica, Vol. 56, No. 8, pp.4319-4325, (2007).
DOI: 10.7498/aps.56.4319
Google Scholar
[8]
S.H. Ma, J.P. Fang and C.L. Zheng: Complex wave excitations and chaotic patterns for a generalized (2+1)-dimensional korteweg de-vries system. Chin. Phys B (2008) 17(08): 2767-2773.
DOI: 10.1088/1674-1056/17/8/004
Google Scholar
[9]
S.H. Ma, X.H. Wu, J.P. Fang and C.L. Zheng: New exact solutions for the (3+1)-Dimensional Jimbo-Miwa System. Chaos, Solitons and Fractals(2009)40(3): 1352-135.
DOI: 10.1016/j.chaos.2007.09.012
Google Scholar
[10]
L.J.F. Broer: Approximate Equations for Long Water Waves. Applied Scientzlfic Research (1975)31(5): 377-395.
Google Scholar
[11]
D.J. Kaup: Finding Eigenvalue Problems for Solving Nonlinear Evolution Equations. Progress of Theoretical Physics (1975)54(1): 72 -78.
DOI: 10.1143/ptp.54.72
Google Scholar
[12]
L. Martinez: Schrodinger Spectral Problems with Energy - Dependent Potentials as Sources of Nonlinear Hamiltonian Evolution Equations. Journal of Mathematical Physics(1980) 21(9): 2342-2349.
DOI: 10.1063/1.524690
Google Scholar
[13]
B.A. Kupershmidt: Mathematics of Dispersive Water Waves. Communications in Mathematical Physics(1985)99(1): 51-73.
DOI: 10.1007/bf01466593
Google Scholar
[14]
M.M. Helal, M.L. Mekky, E.A. Mohamed: The Characteristic Function Method and Its Application to (1+l)-Dimensional Dispersive Long Wave Equation. Applied Mathematics(2012)3(1): 12-18.
DOI: 10.4236/am.2012.31002
Google Scholar