A Low Complexity Implementation in Hardware on Simplified Log-MAP Algorithm for T-TCM Decoding

Article Preview

Abstract:

A simplified decoding algorithm for turbo trellis-coded modulation (T-TCM) is proposed, which is easy to implement in hardware. The algorithm exploits a new piece-wise function to replace the logarithmic term of the Jacobian logarithm based on the MacLaurin Series. Simulation results show that the proposed algorithm can archive log-MAP-similar decoding performance with a much lower computational complexity. It can reduce about 40% of calculation in contrast to the improved MAX-Log-MAP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1539-1544

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Robertson, P., and Worz, T. Bandwidth-efficient turbo trellis-coded modulation using punctured component codes, IEEE J. Sel. Areas Commun., 1998, 16, (2), p.206–218.

DOI: 10.1109/49.661109

Google Scholar

[2] Ungerboeck, G. Channel coding with multilevel/phase signalling, IEEE Trans. Inf. Theory, 1982, 25, (1), p.55–67.

DOI: 10.1109/tit.1982.1056454

Google Scholar

[3] Sybis, Michal, Branch canceling technique for turbo TCM decoding, IEEE European Wireless Conference, 2012, pp.1-5.

Google Scholar

[4] Ji-Hoon Kim, In-CheolPark, ExpressBriefs, Bit-Level extrinsic information exchange method for double-binary turbo codes, IEEE Transactions, 56, (1), 2009, p.81–85.

DOI: 10.1109/tcsii.2008.2008523

Google Scholar

[5] Sybis, S., Log-MAP equivalent Chebyshev inequalitybased algorithm for turbo TCM decoding, Electron. Lett., 2011, 47, (18), pp.1049-1050.

DOI: 10.1049/el.2011.2141

Google Scholar

[6] D. Mackay, Good error correcting codes based on very sparse matrices, IEEE Trans. Inform Theory, vol. 45, Mar. 1999, pp.399-431.

DOI: 10.1109/18.748992

Google Scholar

[7] L. Bahl, J. Cocke, J. Jelinek, J. Raviv, and F. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, , IEEE Trans. Inform. Theory, vol. IT- 20, Mar. 1974, pp.284-287.

DOI: 10.1109/tit.1974.1055186

Google Scholar

[8] Xiaoyi Li, ZhaoFang, "Research on improved turbo-codes decoding algorithm , [J]. Computer 2009, 25, pp.230-232.

Google Scholar

[9] C. Berrou and A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: Turbo-codes, " Proc. ICC , 93, May 1993, pp.1064-1070.

DOI: 10.1109/icc.1993.397441

Google Scholar

[10] Robertson, P., Hoeher, P., and Villebrun, E.: Optimal and sub-optimalmaximum a posteriori algorithms suitable for turbo decoding, Eur. Trans. Telecommun., 1997, 8, (2), p.119–125.

DOI: 10.1002/ett.4460080202

Google Scholar

[11] J. P. Woodard and L. Hanzo, Comparative study of turbo decoding techniques: An overview, IEEE Trans. Veh, Technol., vol. 49, no. 6, Nov. 2000, pp.2208-2233.

DOI: 10.1109/25.901892

Google Scholar

[12] S. Talakoub, L. Sabeti, B. Shahrrava, and M. Ahmadi, An improved Max-Log-MAP algorithm for turbo decoding and turbo equalization, IEEE Trans. on Instrumentation and measurement, vol. 56, no. 3, Jun. 2007, pp.1058-1063.

DOI: 10.1109/tim.2007.894228

Google Scholar

[13] Park, S. -J., Combined Max-Log-MAP and Log-MAP of turbo codes, Electron. Lett., 2004, 40, (4), pp.251-252.

DOI: 10.1049/el:20040181

Google Scholar

[14] Robertson P, Villebrun E, Hoeher P., A comparison of optimal and sub-Optimal MAP decoding algorithms operating in the Log domain, IEEE International Conference on 1822, Jun. 1995, pp.1009-1013.

DOI: 10.1109/icc.1995.524253

Google Scholar

[15] S. Lin, Daniel, J. Costello, Jr, Error Control Coding (Second Edition), China Machine Press, Jun. 2007, pp.372-378, 478-484.

Google Scholar