Detecting Tower Cranes in Images

Article Preview

Abstract:

In this paper, we present a new detection algorithm for tower crane. First the objects are segmented by an improved J-SEG algorithm, and then the geometric characteristics and luminance information are used to identify the tower crane objects. Experimental results indicate our algorithm can deal with most of the tower crane images, and it is suitable for the track object initialization in the video surveillance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-357

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Boukouvalas,J. Kittler,R. Marik , Color Grading of Randomly Textured Ceramic Tiles Using Color Histogram[J], IEEE Trans. Industrial electronics , 2000, l: 219- 226.

DOI: 10.1109/41.744415

Google Scholar

[2] Kan-Min Chen, Shu-Yuan Chen, Color texture segmentation using feature distri- butions[J], Pattern Recogniation Letters 2002, 23: 755-771.

DOI: 10.1016/s0167-8655(01)00150-7

Google Scholar

[3] Yining Deng and B.S. Manjunath, Únsupervised Segmentation of Color –Texture Regions in Images and Video, IEEE Trans on pattern analysis and machine intelli- gence, 2001, 23: 256-261.

DOI: 10.1109/34.946985

Google Scholar

[4] Simona E. Grigorescu, Nicolai Petkov, and Peter Kruizinga, Comparison of Texture Features Based on Gabor Filters[J], IEEE Trans , 2002, 11: 564-571.

DOI: 10.1109/tip.2002.804262

Google Scholar

[5] Lu,S., Hernandez J.E. Texture Segmentation by Clustering of Gabor Feature Vectors, IEEE Proc. of the Int. Conf. on Artificial Neural Networks I, 1991, 5: 683-687.

Google Scholar

[6] Alfsmann, D., Göckler, H. G., Sangwine, S. J., & Ell, T. A. (2007). Hypercomplex algebras in digital signal processing: benefits and drawbacks (tutorial). In EURASIP 15th European signal processing conference, EUSIPCO 2007, Poland (p.1322–1326).

Google Scholar

[7] Arbeláez, P. A., & Cohen, L. D. (2006). A metric approach to vectorvalued image segmentation. International Journal of Computer Vision, 69(1), 119–126.

DOI: 10.1007/s11263-006-6857-5

Google Scholar

[8] Bar, L., Brook, A., Sochen, N., & Kiryati, N. (2007). Deblurring of color images corrupted by impulsive noise. IEEE Transactions on Image Processing, 16(4), 1101–1111.

DOI: 10.1109/tip.2007.891805

Google Scholar

[9] Bertelli, L., Sumengen, B., Manjunath, B., & Gibou, F. (2008). A variational framework for multiregion pairwise-similarity-based image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1400–1414.

DOI: 10.1109/tpami.2007.70785

Google Scholar

[10] Brook, A., Kimmel, R., & Sochen, N. A. (2003). Variational restoration and edge detection for color images. Journal of Mathematical Imaging and Vision, 18(3), 247–268.

DOI: 10.1023/a:1022895410391

Google Scholar

[11] Y. Deng, B.S. Manjunath and H. Shin, Color image segmentation [J], Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR '99, 1999, 2: 446-451.

DOI: 10.1109/cvpr.1999.784719

Google Scholar