[1]
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, (1995) 1942-(1948).
Google Scholar
[2]
L. Zhao, F. Qian, Tuning the structure and parameters of a neural network using cooperative binary-real particle swarm optimization, Expert Syst. Appl. 38 (2011) 4972-4977.
DOI: 10.1016/j.eswa.2010.09.154
Google Scholar
[3]
R.J. Kuo, C.M. Chao, Y.T. Chiu, Application of particle swarm optimization to association rule mining, Appl. Soft Comput. 11 (2011) 326–336.
DOI: 10.1016/j.asoc.2009.11.023
Google Scholar
[4]
H. Modares, A. Alfi, and M.M. Fateh, Parameter identification of chaotic dynamic systems through an improved particle swarm optimizatio, Expert Syst. Appl. 37 ( 2010) 3714-3720.
DOI: 10.1016/j.eswa.2009.11.054
Google Scholar
[5]
M. Khodier, G. Saleh, Beamforming and power control for interference reduction in wireless communications using particle swarm optimization, Int. J. Electron. Commun. 64 (2010) 489–502.
DOI: 10.1016/j.aeue.2009.03.010
Google Scholar
[6]
Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Processings of the IEEE Congress on Evolutionary Computation, Piscataway, USA, (1998) 69-73.
DOI: 10.1109/icec.1998.699146
Google Scholar
[7]
T. Beielstein, K.E. Parsopoulos, M.N. Vrahatis, Tuning pso parameters through sensitivity analysis, in: Technical Report, Reihe Computational Intelligence CI 124/02, Department of Computer Science, University of Dortmund, (2002).
Google Scholar
[8]
I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Inform Process Lett., 85(6)(2003)317-325.
DOI: 10.1016/s0020-0190(02)00447-7
Google Scholar
[9]
E. Ozcan, C.K. Mohan, Analysis of a simple paticle swarm optimization system, in: Intelligent Engineering Systems through Artificial Neural Networks, (1998) 253-258.
Google Scholar
[10]
E. Ozcan, C.K. Mohan, Particle swarm optimization: Srufing the waves, in: Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, USA, (1999).
Google Scholar
[11]
F. Van Den Berghand , A. P. Engelbrecht, A study of particle swarm optimization particle trajectories, Inform. Sciences 176 (2006) 937–971.
DOI: 10.1016/j.ins.2005.02.003
Google Scholar
[12]
M. Clerc , J. Kennedy, The particle swarm: Explosion, stability, and convergence in a multidimensional complex space, IEEE T. Evolut. Comput. 6 (2002) 58–73.
DOI: 10.1109/4235.985692
Google Scholar
[13]
R. Mendes, Population Topologies and Their Influence in Particle Swarm Performance, University of Minho, April (2004).
Google Scholar
[14]
R. Mendes, Population Topologies and Their Influence in Particle Swarm Performance, University of Minho, (2004).
Google Scholar
[15]
C. K. Monson , K. D. Seppi, Adaptive diversity in PSO, in: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO '06), New York, USA, (2006) 59–66.
DOI: 10.1145/1143997.1144006
Google Scholar
[16]
R. C. Eberhart , Y. H. Shi, Computational Intelligence: Concepts to Implementations, San Mateo, CA: Morgan Kaufmann, (2007).
Google Scholar
[17]
J. Kennedy, R. Eberhart, Y.H. Shi, Swarm Intelligence, San Mateo, CA: Morgan Kaufmann, (2001).
Google Scholar