A Study on Particle Trajectory of Particle Swarm Optimization

Article Preview

Abstract:

For studying the sensitivity of PSO to control parameter choices, this paper proposes a special model of PSO theoretically. This model divides the position sequence of particle into the odd and even sub-sequences. The theorem demonstrates the position sequence of particle is affected by the parameter choices, the initialized position and velocity. Simulations for benchmark functions illustrate the validity of the odd-even property of particle trajectory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

662-666

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, (1995) 1942-(1948).

Google Scholar

[2] L. Zhao, F. Qian, Tuning the structure and parameters of a neural network using cooperative binary-real particle swarm optimization,  Expert Syst. Appl. 38 (2011) 4972-4977.

DOI: 10.1016/j.eswa.2010.09.154

Google Scholar

[3] R.J. Kuo, C.M. Chao, Y.T. Chiu, Application of particle swarm optimization to association rule mining, Appl. Soft Comput. 11 (2011) 326–336.

DOI: 10.1016/j.asoc.2009.11.023

Google Scholar

[4] H. Modares, A. Alfi, and M.M. Fateh, Parameter identification of chaotic dynamic systems through an improved particle swarm optimizatio, Expert Syst. Appl. 37 ( 2010) 3714-3720.

DOI: 10.1016/j.eswa.2009.11.054

Google Scholar

[5] M. Khodier, G. Saleh, Beamforming and power control for interference reduction in wireless communications using particle swarm optimization, Int. J. Electron. Commun. 64 (2010) 489–502.

DOI: 10.1016/j.aeue.2009.03.010

Google Scholar

[6] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Processings of the IEEE Congress on Evolutionary Computation, Piscataway, USA, (1998) 69-73.

DOI: 10.1109/icec.1998.699146

Google Scholar

[7] T. Beielstein, K.E. Parsopoulos, M.N. Vrahatis, Tuning pso parameters through sensitivity analysis, in: Technical Report, Reihe Computational Intelligence CI 124/02, Department of Computer Science, University of Dortmund, (2002).

Google Scholar

[8] I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Inform Process Lett., 85(6)(2003)317-325.

DOI: 10.1016/s0020-0190(02)00447-7

Google Scholar

[9] E. Ozcan, C.K. Mohan, Analysis of a simple paticle swarm optimization system, in: Intelligent Engineering Systems through Artificial Neural Networks, (1998) 253-258.

Google Scholar

[10] E. Ozcan, C.K. Mohan, Particle swarm optimization: Srufing the waves, in: Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, USA, (1999).

Google Scholar

[11] F. Van Den Berghand , A. P. Engelbrecht, A study of particle swarm optimization particle trajectories, Inform. Sciences 176 (2006) 937–971.

DOI: 10.1016/j.ins.2005.02.003

Google Scholar

[12] M. Clerc , J. Kennedy, The particle swarm: Explosion, stability, and convergence in a multidimensional complex space, IEEE T. Evolut. Comput. 6 (2002) 58–73.

DOI: 10.1109/4235.985692

Google Scholar

[13] R. Mendes, Population Topologies and Their Influence in Particle Swarm Performance, University of Minho, April (2004).

Google Scholar

[14] R. Mendes, Population Topologies and Their Influence in Particle Swarm Performance, University of Minho, (2004).

Google Scholar

[15] C. K. Monson , K. D. Seppi, Adaptive diversity in PSO, in: Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO '06), New York, USA, (2006) 59–66.

DOI: 10.1145/1143997.1144006

Google Scholar

[16] R. C. Eberhart , Y. H. Shi, Computational Intelligence: Concepts to Implementations, San Mateo, CA: Morgan Kaufmann, (2007).

Google Scholar

[17] J. Kennedy, R. Eberhart, Y.H. Shi, Swarm Intelligence, San Mateo, CA: Morgan Kaufmann, (2001).

Google Scholar