[1]
M.I. Jordan and F.R. Bach. Learning spectral clustering, Advances in Neural Information Processing Systems 16, (2004), p.305–312.
Google Scholar
[2]
A.Y. Ng, M.I. Jordan and Y. Weiss. On spectral clustering: Analysis and an algorithm, Advances in Neural Information Processing Systems14, Vol. 2, ( 2002), pp.849-856.
Google Scholar
[3]
E. Hullermeier, M. Rifqi and S. Henzgen. Comparing fuzzy partitions: A generalization of the Rand index and related measures, Fuzzy Systems, IEEE Transactions on, Vol. 20, ( 2012) , pp.546-556.
DOI: 10.1109/tfuzz.2011.2179303
Google Scholar
[4]
N. Ye, K.M.A. Chai, W.S. Lee and H. L. Chieu. Optimizing F-Measures: A Tale of Two Approaches, In Proceedings of the International Conference on Machine Learning, Edinburgh, Scotland, UK, (2012).
Google Scholar
[5]
P.A. Estévez, M. Tesmer, C.A. Perez and J.M. Zurada. Normalized mutual information feature selection, Neural Networks, IEEE Transactions on, Vol. 20, (2009), pp.189-201.
DOI: 10.1109/tnn.2008.2005601
Google Scholar
[6]
U. Von. Luxburg. A tutorial on spectral clustering, Statistics and computing, Vol. 17, (2007), pp.395-416.
DOI: 10.1007/s11222-007-9033-z
Google Scholar
[7]
P. Perona and L. Zelnik-Mano. Self-tuning spectral clustering, Advances in Neural Information Processing Systems19, (2004), pp.1601-1608.
Google Scholar
[8]
R. J. Gu, B. Ye and W. B. Xu. An improved spectral clustering algorithm, Journal of Computer Research and Development, Vol. 44, (2007), pp.145-149.
Google Scholar
[9]
X. Y. Liu and J. W. Li et al. Adaptive Spectral Clustering Based on Shared Nearest Neighbors, Journal of Chinese Computer Systems, Vol. 32, (2011), pp.1876-1880.
Google Scholar
[10]
Y. C. Gong and C. Chen. Locality Spectral Clustering, AI 2008: Advances in Synthetic datasets Intelligence, Vol. 5360, (2008), pp.348-354.
DOI: 10.1007/978-3-540-89378-3_34
Google Scholar
[11]
H. Chang, D.Y. Yeung. Robust path-based spectral clustering, Pattern Recognition, Vol. 41, ( 2008) pp.191-203.
DOI: 10.1016/j.patcog.2007.04.010
Google Scholar
[12]
W. M. Rand. Objective criteria for the evaluation of clustering methods, Journal of the American Statistical Association, Vol. 66, (1971), pp.846-850.
DOI: 10.1080/01621459.1971.10482356
Google Scholar
[13]
D. Pfitzner and R. Leibbrandt et al. Characterization and evaluation of similarity measures for pairs of clusterings, Knowledge and Information Systems, Vol. 19, (2009), pp.361-394.
DOI: 10.1007/s10115-008-0150-6
Google Scholar
[14]
E. Amigó, J. Gonzalo, J. Artiles and F. Verdejo. A comparison of extrinsic clustering evaluation metrics based on formal constraints, Information retrieval, Vol. 12, ( 2009), pp.461-486.
DOI: 10.1007/s10791-008-9066-8
Google Scholar
[15]
T.M. Cover and J. A. Thomas. Elements of information theory, Wiley-interscience(2012).
Google Scholar
[16]
UCI Machine Learning Repository: http: /archive. ics. uci. edu/ml/datasets. html.
Google Scholar