[1]
A.H. Nayfeh, Methods of Normal Forms , Springer-Verlag, (1993).
Google Scholar
[2]
V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, Berlin, (1983).
Google Scholar
[3]
J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer, (1994).
Google Scholar
[4]
S.N. Chow, C. Li, D. Wang, Normal Forms and Bifurcaiton of Planar Vector Fields, Cambridge University Press, Cambridge, (1983).
Google Scholar
[5]
C. Elphick, E. Tirapegui, M. E. Bracket, P. Coullet , G. Ioss, A simple global characterization for normal forms of singular vector fields, Physica D 29(1987), 95-117.
DOI: 10.1016/0167-2789(87)90049-2
Google Scholar
[6]
J. Carr, Applications of Center Manifold Theory, Springer-Verlag, (1981).
Google Scholar
[7]
Pei Yu, Computation of normal forms via a perturbation technique, Journal of Sound and Vibration 211(1998), 19-38.
DOI: 10.1006/jsvi.1997.1347
Google Scholar
[8]
L.O. Chua, H. Kokubu, Normal form for nonlinear vector fields -Part I: Theory and Algorithm, IEEE. Trans Circuits syst 35(1988), 863-880.
DOI: 10.1109/31.1833
Google Scholar
[9]
L.O. Chua, H. Kokubu, Normal form for nonlinear vector fields -Part II: Application, IEEE. Trans Circuits syst 36(1988), 57-71.
DOI: 10.1109/31.16563
Google Scholar
[10]
S. Ushiki, Normal forms for singularities of vector fields, Jpn J. Appl. Math 1(1984), 1-37.
Google Scholar
[11]
P. Yu, A.Y.T. Leung, A Perturbation method for computing the simplest normal forms of dynamical systems, Journal of Sound and Vibration 261(2003), 123-151.
DOI: 10.1016/s0022-460x(02)00954-9
Google Scholar
[12]
A. Baider, J.A. Sanders, Further reduction of the Takens-Bogdanov normal forms, Journal of Differential Equations 99(1992), 205-244.
DOI: 10.1016/0022-0396(92)90022-f
Google Scholar
[13]
P. Yu, Y. Yuan, The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue, J. Math. Res. Exp. 8 (2001), 219-249.
Google Scholar
[14]
W. Zhang, F.X. Wang, Jean W. Zu, Computation of normal form for high dimensional non-linear oscillators of a cantilever beam. Journal of Sound and Vibration 278(2004), 949-974.
DOI: 10.1016/j.jsv.2003.10.021
Google Scholar
[15]
G. Haller, S. Wiggins, Orbits homoclinic to resonance: the Hamiltonian, Physica D 66(1993), 298-346.
DOI: 10.1016/0167-2789(93)90071-8
Google Scholar