Local Adaptive Nonlinear Filter Prediction Model with a Parameter for Chaotic Time Series

Article Preview

Abstract:

In order to improve the predictive performance for chaotic time series, we propose a novel local adaptive nonlinear filter prediction model. We use a function with a parameter to build an adaptive nonlinear filter in this model, and we train this model with an adaptive algorithm, deduced by the minimum square-root-error criterion and the steepest gradient descent rule. We evaluate the proposed model using four well-known chaotic systems, namely Logistic map, Henon map, Lorenz system and Rosslor system. All the results show a remarkable increase in predictive performance, comparing with the local adaptive nonlinear filter prediction model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3180-3184

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kantz, T. Schreiber: Nonlinear Time Series Analysis (Cambridge University Press, Cambridge 1997).

Google Scholar

[2] Qingfang Meng, Qiang Zhang, Wenying Mu: Acta Phys. Sinica Vol. 55 (2006), p.1665.

Google Scholar

[3] J.J. Hopfield, D.W. Tank: Biol. Cybernetics Vol. 52 (1985), p.141.

Google Scholar

[4] R. Gencay, L. Tung: Physica D Vol. 108(1997)p.119.

Google Scholar

[5] J.D. Farmer J.J. Sidorwich: Phys. Rev. Letters Vol. 59 (1987), p.845.

Google Scholar

[6] Jiashu Zhang , Xianci Xiao: Acta Phys. Sinica Vol. 49 (2000), p.403.

Google Scholar

[7] Jiashu Zhang , Xianci Xiao: Acta Phys. Sinica Vol. 53 (2004), p.710.

Google Scholar

[8] Jianchao Gan, Xianci Xiao: Acta Phys. Sinica Vol. 52 (2003), p.1096.

Google Scholar

[9] Jianchao Gan, Xianci Xiao: Acta Phys. Sinica Vol. 52 (2003), p.1102.

Google Scholar

[10] Jie Du, Yijia Cao, Zhijian Liu, Lizhong Xu and Quanyuan Jiang: Acta Phys. Sinica Vol. 58(2009), p.5997.

Google Scholar