[1]
GUO Jie, PAN Jin-gui , A New Linear Quadtree-based Image Segmentation Algorithm [J]. Journal of System Simulation , 2009, 21(1): 54-60.
Google Scholar
[2]
Peter Lindstrom, David Koller, William Ribarsky, et al. Read-time, continuous level of detail rendering of height fields[C]/SIGGRAPH'96 Proceedings, Los Angeles, Califormia, 1996: 109-118.
DOI: 10.1145/237170.237217
Google Scholar
[3]
Mark Duchaineauy, Murray Wolinsky, et al. ROAMing Terrain: Real-time Optimally Adapting Meshes[C]/In: Proc. IEEE Visualization. Phoenix, AZ, USA, 1997: 81-88.
DOI: 10.1109/visual.1997.663860
Google Scholar
[4]
Stephan Rottger, Wolfgang Heidrich. Real-Time Generation of Continuous Levels of Detail for Height Fields[EB/OL]. http: /www. cs. ubc. ca/~heidrich/Papers/ WSCG. 98. pdf, (1998).
Google Scholar
[5]
JIN Hailiang, An algorithm for large-scale terrain generation based on quadtree structure [J]. Journal of Liaoning Technical University(Natural Science), 2009-08, 28(4): 546-549.
Google Scholar
[6]
Thomas E. Portegys. A Location-based Cooperative Web Service Using Google Maps[D]. Illinois State University. U.S.A., (2003).
Google Scholar
[7]
Huang Jin, Image Classification Based on Fractal Dimension and Co-occurrence [D]. Wuhan University of Technology, 2008-04, 27-28.
Google Scholar
[8]
Heinzotto Peitgen, P.H. Richter, D. Saupe, Chaos and Fractals: New Frontiers of Science 2nd edition [M], 2008-08, 181-182 (in Chinese).
Google Scholar
[9]
Yi Chuanjun, Fast Fractal Image Encoding Based on Novel Quadtree Partition [J]. Computer & Digital Engineering, 2009-07, 37(7), 151-153.
Google Scholar