Automatic Image Tagging via a Generative Probabilistic Model

Article Preview

Abstract:

We present an approach to tag image automatically via visual topic detecting and initial annotations expanding. Visual topics are detected from corel5k dataset by probabilistic latent semantic analysis (PLSA) model. For an image which is to be tagged, PLSA is used to find visual topic of this image, and then construct initial annotations set. After initial annotations are generated, we use a weighted voting scheme and Flickr API to expand initial annotations. After the above two process, we combine initial annotations and expanded annotations together to construct final annotations. From experimental results, the conclusions can be draw that our PLSA based image tagging approach works effectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3443-3447

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Barnard et al.: J. Machine Learning Research, no. 3, (2003), pp.1107-1135.

Google Scholar

[2] K. Barnard et al.: Internet Imaging IX, Electronic Imaging, (2003).

Google Scholar

[3] D. Blei and M.I. Jordan: Proc. 26th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval, (2003), pp.127-134.

Google Scholar

[4] G. Carneiro and N. Vasconcelos: Proc. 28th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval, (2005), pp.559-566.

Google Scholar

[5] E. Chang et al.: IEEE Trans. CSVT, vol. 13, no. 1, (2003), pp.26-38.

Google Scholar

[6] P. Duygulu et al.: ECCV 2002, (2002), pp.97-112.

Google Scholar

[7] B.T. Li, K. Goh, and E. Chang: MM 2003, (2003), pp.195-206.

Google Scholar

[8] J. Li and J. Wang: IEEE Trans. PAMI, vol. 25, no. 9, ( 2003), pp.1075-1088.

Google Scholar

[9] Y. Mori et al.: Proc. First Int'l Workshop Multimedia Intelligent Storage and Retrieval Management, (1999).

Google Scholar

[10] T. Hofmann.: Machine Learning, 42, Numbers 1-2, (2001), pp.177-196.

Google Scholar

[11] J. Shi and J. Malik. In Proc. CVPR, (1997), pp.731-743.

Google Scholar

[12] D. Lowe: 60(2), International Journal of Computer Vision, (2004), pp.91-110.

Google Scholar

[13] http: /www. stat. psu. edu/∼jiali/index. download. html.

Google Scholar

[14] J. Li, J. Z. Wang.: IEEE trans. on PAMI, Vol. 30, No. 6. (2008), pp.985-1002.

Google Scholar

[15] X. -J. Wang et al.: CVPR 2006, (2006), pp.1483-1490.

Google Scholar

[16] ALIPR. http: /www. alipr. com.

Google Scholar

[17] Linde, Y., Buzo, A., Gray, R.: IEEE Transactions on Communications, vol. 28, (1980), pp.84-94.

Google Scholar

[18] Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D. A: ECCV 2002, (2002), pp.97-112.

Google Scholar