Data Fusion for MFL Signal Characterization

Article Preview

Abstract:

The objective of data fusion is to be able to draw inferences that may not be feasible with data from a single sensor alone. In this paper, data from three sets of sensors are fused to estimate the defect profile from magnetic flux leakage (MFL) inspection data. The three sensors measure the axial, radial and tangential components of the MFL field. Data is fused at the feature level. Examples of signal features are amplitude, width, etc. A radial basis function network (RBFN) is then employed to map the fused features appropriately to obtain the geometric profile of the defect. The feasibility of the approach is evaluated using the data obtained from the MFL inspection of oil pipes. The results obtained by fusing the axial, radial and tangential components appear to be better than those obtained using the axial and radial component alone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3519-3523

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.W. Krause, K. Mandal and C. Hauge, et al: J. Magn. Magn. Mater. Vol. 169(1-2) (1997), p.207.

Google Scholar

[2] M. Afzal and S. Udpa: NDT & E Int. Vol. 35 (2002), p.449.

Google Scholar

[3] A.A. Carvalho, J.M.A. Rebello and L.V.S. Sagrilo, et al: NDT & E Int. Vol. 39 (2006), p.661.

Google Scholar

[4] W. Mao, L. Clapham, and D.L. Atherton: NDT & E Int. Vol. 36 (2003), p.111.

Google Scholar

[5] A. Mitchie and J.K. Aggarwal: Optical Engr. Vol. 25 (3) (1986), p.380.

Google Scholar

[6] J.C. Platt: Neural Comput. Vol. 3 (1991), p.213.

Google Scholar

[7] X. Fu and L. Wang: IEEE Trans. Syst. Man Cybern. Vol. 33 (2003), p.399.

Google Scholar