[1]
Klaus Graff, Metal impurities in silicon-device fabrication, Springer-Verlag, Berlin, (1995).
Google Scholar
[2]
J. Schön, H. Habenicht, M. C. Schubert, and W. Warta, Solid State Phenomena 156-158, 223-228 (2009).
DOI: 10.4028/www.scientific.net/ssp.156-158.223
Google Scholar
[3]
S. Rein, Lifetime spectroscopy: A method of defect characterization in silicon for photovoltaic applications, Springer 2004, Berlin, Germany.
Google Scholar
[4]
J. Dziewior, W. Schimd, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett. 31 (5) 346-8, (1997).
DOI: 10.1063/1.89694
Google Scholar
[5]
R. Hall, Electron-hole recombination in germanium, Physics Review 87 (1952) 387.
Google Scholar
[6]
W. Shockley , W. Read, Statistics of the recombinations of holes and electrons, Physical Rev. 87 (1952) 835-842.
DOI: 10.1103/physrev.87.835
Google Scholar
[7]
V. Grivickas, D. Noreika, J.A. Tellefsen, Surface and Auger recombination in silicon wafers of high carrier density, Lithunian Physics Journal 29 (5), 48-53, (1989).
Google Scholar
[8]
H. Habenicht et al, Outdiffusion of metal from grain boundaries in multicrystalline silicon during thermal processing, in: proc. 22nd EUPVSEC, Italy (2007), p.1519 – 1523.
Google Scholar
[9]
M. C. Schubert et al, Determination of spatially resolved trapping parameters in silicon with injection dependent carrier density imaging, J. Appl. Phys. 99, 114908 (2006).
DOI: 10.1063/1.2202729
Google Scholar
[10]
P. Pohl et al, Defect imaging in multicrystalline silicon using lock-in infrared camera technique, J. Appl. Phys. 101, 073701 (2007).
DOI: 10.1063/1.2713933
Google Scholar
[11]
M. C. Schubert and W. Warta, Prediction of diffusion length in multicrystalline silicon solar cells from trapping images of starting material, Prog. Photovolt. 15, 331(2007).
DOI: 10.1002/pip.738
Google Scholar
[12]
P. Gundel et al, Origin of trapping in multicrystalline silicon, J. Appl. Phys. 104, 073716 (2008).
DOI: 10.1063/1.2990053
Google Scholar