Complete Convergence of Generalized Pairwise NQD Sequences

Article Preview

Abstract:

In this paper, by the moment inequality of generalized pairwise negatively quadrant dependent (NQD) sequences, we prove the convergence of the generalized pairwise NQD sequences, which extend and improve the previous relevant results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

742-745

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.L. Lehmann. Ann. Math. Statist Vol. 43 (1966), pp.1137-1153.

Google Scholar

[2] H. Doosti, H.A. Niroumand. J. Sci. I.R. Iran Vol. 16(2005), pp.255-259.

Google Scholar

[3] S.X. Gan, P.Y. Chen. Acta Mathematic Scientia Vol. 28(2008), pp.269-281.

Google Scholar

[4] R. Li, W.G. Yang. J. Math. Anal. Appl Vol. 344(2008), pp.741-747.

Google Scholar

[5] S.H. Sung. Appl. Math. Lett Vol. 26 (2012), pp.18-24.

Google Scholar

[6] Q.Y. Wu, Y.Y. Jiang. J. Syst. Sci. Complex Vol. 24(2011), pp.347-357.

Google Scholar

[7] Y.B. Wang, C. Su, X.G. Liu. Acta. Math. Appl. Sin Vol. 21(1998), pp.404-414. In Chinese.

Google Scholar

[8] L.X. Zhang, J.F. Wang. Appl. Math.J. Chinese Univ. Ser. A. Vol. 19(2004), pp.203-208. In Chinese.

Google Scholar

[9] H.W. Huang, D.C. Wang, Q.Y. Wu, Q. X. Zhang. J. Inequal. Appl., 2011, 2011: 92, doi: 10. 1186/ 1029-242X-2011-92.

Google Scholar

[10] Z.G. Deng, W. P. Fan. Pure Mathematics, Vol. 1(2011), pp.132-135. In Chinese.

Google Scholar

[11] A.H. Fan, Z.Z. Wang. J. Inequal. Appl., 2013, 2013: 25, doi: 10. 1186/1029-242X-2013-25.

Google Scholar

[12] J. G. Wang. Modern probability theory foundation. Fudan University Press, 2005. In Chinese.

Google Scholar