[1]
K. Nishimura, N. Miyazaki, Molecular dynamics simulation of crack growth under cyclic loading, Computational Materials Science, 31 (2004) 269-278.
DOI: 10.1016/j.commatsci.2004.03.009
Google Scholar
[2]
T. Inamura, N. Takezawa, K. Shibuya, K. Yamada, Dynamic phenomena at mode-I crack front in silicon simulated by extended molecular dynamics, CIRP Annals -Manufacturing Technology, 56 (2007) 561-564.
DOI: 10.1016/j.cirp.2007.05.134
Google Scholar
[3]
B. Decelis, A. S. Argon, S. Yip, Molecular dynamics simulation of crack tip processes in alpha-iron and copper, Journal of applied physics, 54 (1983) 4864-4878.
DOI: 10.1063/1.332796
Google Scholar
[4]
Y.F. Guo, S.W. Gao, Atomistic simulation of crack propagation and its size-dependent behavior, Journal of Beijing Jiaotong University, 29 (2005) 5-9.
Google Scholar
[5]
T. Ohashi, Crystal plasticity analysis of dislocation emission from microvoids, International journal of plasticity, 21 (2005) 2071–(2088).
DOI: 10.1016/j.ijplas.2005.03.018
Google Scholar
[6]
B. Liu, X. M. Zhang, J. G. Tang, Y. X. Du, Simulation of void growth and coalescence behavior with 3D crystal plasticity[J]. Computational Materials Science, 2007, 40: 130–139.
DOI: 10.1016/j.commatsci.2006.11.009
Google Scholar
[7]
F.D. Fisher, T. Antretter, Deformation, stress state and thermodynamic force for a growing void in an elastic–plastic material, International journal of plasticity, 25 (2009) 1819–1832.
DOI: 10.1016/j.ijplas.2008.11.007
Google Scholar
[8]
G. P. Potirniche, J. L. Hearndon, M. F. Horstemeyer, X.W. Ling, Lattice orientation effects on void growth and coalescence in fcc single crystals, International journal of plasticity, 22 (2006) 921–942.
DOI: 10.1016/j.ijplas.2005.06.003
Google Scholar
[9]
B. Liu, Y. Huang, M. Li, K.C. Hwang, C. Liu. A study of the void size effect based on the Taylor dislocation model, International journal of plasticity, 21 (2005) 2107–2122.
DOI: 10.1016/j.ijplas.2005.03.016
Google Scholar
[10]
U. Borg, C.F. Niordson, J.W. Kysar, Size effect on void growth in single crystals with distributed voids, International journal of plasticity, 24 (2008) 688–701.
DOI: 10.1016/j.ijplas.2007.07.015
Google Scholar
[11]
G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, P.M. Gullett, A molecular dynamics study of void growth and coalescence in single crystal nickel, International journal of plasticity, 22(2006) 257–278.
DOI: 10.1016/j.ijplas.2005.02.001
Google Scholar
[12]
Y.H. Zhao, Y.J. Li, Z.A. Yang, Molecular dynamics simulation of Cu with a hole under minus static pressures, Chinese Journal of Computational Physics, 23(2006) 343-349.
Google Scholar
[13]
K.J. Zhao, C.Q. Chen, Y.P. Shen, T.J. Lu, Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper, Computational Materials Science, 46 (2009) 749-754.
DOI: 10.1016/j.commatsci.2009.04.034
Google Scholar
[14]
J. Segurado, J. Llorca, Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals, International journal of plasticity, 26 (2010) 806–819.
DOI: 10.1016/j.ijplas.2009.10.009
Google Scholar
[15]
V.A. Lubarda, Emission of dislocations from nanovoids under combined loading, International journal of plasticity, 27 (2011) 181–200.
DOI: 10.1016/j.ijplas.2010.04.005
Google Scholar
[16]
D. Huang, W.M. Tao, Y.M. Guo, Molecular dynamics simulation of failure process of nano aluminum wire under axial tension, Ordnance Material Science and Engineering, 28 (2005) 1-4.
Google Scholar
[17]
L. Yuan, D.B. Shan, B. Guo, Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum, Journal of Materials Processing Technology, 184 (2007) 1–5.
DOI: 10.1016/j.jmatprotec.2006.10.042
Google Scholar
[18]
R. Komanduri, N. Chandrasekaran, L.M. Raff, MD simulation of indentation and scratching of single crystal aluminum, Wear, 240 (2000) 113–143.
DOI: 10.1016/s0043-1648(00)00358-6
Google Scholar
[19]
B. Chen, X. Peng, J. Fan, S. Chen, A constitutive description for casting aluminum alloy A104 based on the analysis of cylindrical and spherical void models, International journal of plasticity, 21 (2005) 2232–2253.
DOI: 10.1016/j.ijplas.2005.04.004
Google Scholar
[20]
S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, 117 (1995) 1-19.
DOI: 10.1006/jcph.1995.1039
Google Scholar
[21]
J.D. Honeycutt, H.C. Andersen, Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters, Journal of Physical Chemistry, 91 (1987) 4950–4963.
DOI: 10.1021/j100303a014
Google Scholar
[22]
H. Tsuzuki, P.S. Branicio, J.P. RINO, Structural characterization of deformed crystals by analysis of common atomic neighborhood, Computer physics communications, 177 (2007) 518–523.
DOI: 10.1016/j.cpc.2007.05.018
Google Scholar
[23]
M.I. Baskes, J.S. Nelson, A.F. Wright, Semiempirical modified embedded-atom potentials for silicon and germanium, Physical Review B, 40 (1989) 6085-6100.
DOI: 10.1103/physrevb.40.6085
Google Scholar
[24]
M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Physical Review B, 46 (1992) 2727-2742.
DOI: 10.1103/physrevb.46.2727
Google Scholar
[25]
M.S. Daw, M.I. Baskes, Semiempirical quantum mechanical calculation of hydrogen embrittlement in metals, Physical Review Letters, 50 (1983) 1285-1288.
DOI: 10.1103/physrevlett.50.1285
Google Scholar
[26]
M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, 29 (1984) 6443-6453.
DOI: 10.1103/physrevb.29.6443
Google Scholar