[1]
Galperin, S. A. Orszag, Large eddy simulation of complex engineering and geophysical flows, Cambridge University Press, (1993).
Google Scholar
[2]
Lillberg E, Fureby C, Large eddy simulations of supersonic cavity flow, AIAA paper, 2000-2411.
DOI: 10.2514/6.2000-2411
Google Scholar
[3]
Ffowcs Williams, J. E. and Hawkings, D. L., Sound generation by turbulence and surfaces in arbitrary motion, Proc. Roy. Soc. London, A264, pp.321-342, (1969).
Google Scholar
[4]
F. Felten, Y. Fautrelle, Y. Du Terrail, O. Metais, Numerical modeling of electrognetically-riven turbulent flows using LES methods. Applied Mathematical Modelling, 2004, 28(1): 15-27.
DOI: 10.1016/s0307-904x(03)00116-1
Google Scholar
[5]
Laetitia Doris, Christian Tenaud, Loc Ta Phuoc, LES of spatially developing 3D compressible mixing layer. Computational Fluid Mechanics, 2000, 328(7): 567-573.
DOI: 10.1016/s1620-7742(00)00020-9
Google Scholar
[6]
Horng-Wen Wu, Shiang-Wuu Perng, LES analysis of turbulent flow and heat transfer in motored engines with various SGS models. International Journal of Heat and Mass transfer, 2002, 45(11): 2315-2328.
DOI: 10.1016/s0017-9310(01)00325-8
Google Scholar
[7]
Spalart, P.R., Moser, R.D. and Rogers, M.M., Spectral methods for the Navier-Stokes one infinite and two periodic directions, J. Comp. Physics, 96, 297-324, (1991).
DOI: 10.1016/0021-9991(91)90238-g
Google Scholar
[8]
Aradag, S. and Knight, D. D., Simulation of supersonic cavity flow using 3D RANS equations, AIAA paper 2004-4966.
DOI: 10.2514/6.2004-4966
Google Scholar
[9]
Inagaki, M., Kondoh, T. and Nagano, Y., A mixed-time-scale SGS model with fixed model parameters for practical LES, Eng. Turb. Modelling and Expt. 5, Rodi, W. and Fueyo, N., Eds. Elservier, 257-266 (2002).
DOI: 10.1016/b978-008044114-6/50024-7
Google Scholar
[10]
Kim, S-E., Mathur, S. R., Murthy, J. Y., Choudhury, D., A Reynolds-Averaged Navier-Stokes solver using unstructured mesh based finite-Volume scheme, AIAA paper 1998-0231.
DOI: 10.2514/6.1998-231
Google Scholar
[11]
Giles, M., Non-reflecting boundary conditions for Euler equation calculation, AIAA Journal. Vol. 42, No. 12, 2050-2058, (1990).
Google Scholar
[12]
Ffowcs Williams, J. E. and Hawkings, D. L., Sound generation by turbulence and surfaces in arbitrary motion, Proc. Roy. Soc. London, A264: 321-342, (1969).
Google Scholar
[13]
Casalino, D., An advanced time approach for acoustic analogy predictions, JSV, 261, 583-612, (2003).
DOI: 10.1016/s0022-460x(02)00986-0
Google Scholar
[14]
Farassat, F. and Succi, G.P., The prediction of helicopter discrete frequency noise, Vertica 7 (4) 309-320, (1983).
Google Scholar
[15]
FARASSAT F, BRENTNER K S, The acoustic analogy and the prediction of rotating blades, Theoretical and Computational Fluid Dynamics, Springer-Verlag. 1998, (10): 155-170.
DOI: 10.1007/s001620050056
Google Scholar
[16]
Revell, J. D., Prydz, R. A., and Hays, A. P., Experimental study of airframe noise vs. Drag relationship for circular cylinders, Lockheed Report 28074, Feb. (1997).
DOI: 10.2514/6.1977-1292
Google Scholar
[17]
Krishnamurty K, Acoustic radiation from two dimensional rectangular cutouts in aerodynamic surfaces, NACA TN-3478, (1955).
Google Scholar
[18]
Sung-Eun Kim, Yi Dai, Evangelos K. Koutsavdis, A versatile implementation of acoustic analogy based noise prediction method in a general-purpose CFD, AIAA paper, 2003-3202.
DOI: 10.2514/6.2003-3202
Google Scholar