Global Attractor of the Liquid Helium-4 System in Hk Space

Article Preview

Abstract:

In this paper, by using an iteration procedure, regularity estimates of the linear semi-groups and a generalized existence theorem of global attractor, we prove that the liquid helium-4 system possesses a global attractor in space for all , which attracts any bounded set of in the-norm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

731-737

Citation:

Online since:

October 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equations, Vol. 83 (1990) 85–108.

DOI: 10.1016/0022-0396(90)90070-6

Google Scholar

[2] Q. Ma, S. Wang, C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, Vol. 51, No. 6 (2002).

DOI: 10.1512/iumj.2002.51.2255

Google Scholar

[3] D. Schiff, L. Verlet, Ground state of liquid helium-4 and helium-3, Physical Review, 160 (1967) 208–218.

DOI: 10.1103/physrev.160.208

Google Scholar

[4] J. Wilks, The properties of liquid and solid helium, Clarendon P. (Oxford), (1967).

Google Scholar

[5] O. Penrose, L. Onsager, Bose-Einstein condensation and liquid helium, Physical Review, 104 (1956) 576–584.

DOI: 10.1103/physrev.104.576

Google Scholar

[6] L. D. Landau, J. Phys. (USSR) 5, 71 (1941).

Google Scholar

[7] R.P. Feynman, Atomic theory of the two-fluid model of liquid helium, Physical Review, 94 (1954) 262-277.

DOI: 10.1103/physrev.94.262

Google Scholar

[8] R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975).

Google Scholar

[9] A. Pazy, Semigroups of linear operators and applications to partial differential equations, in: Appl. Math. Sci., Vol. 44, Springer-Verlag, (1983).

DOI: 10.1007/978-1-4612-5561-1_7

Google Scholar

[10] J. K. Hale, Asymptotic behaviors of dissipative systems, AMS, Providence RI, (1988).

Google Scholar

[11] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., in: Appl. Math. Sci., vol. 68, Springer-Verlag, New York, (1997).

Google Scholar

[12] T. Ma, S. H. Wang, Bifurcation Theory and Applications, Nonlinear Science Ser A, Vol 53, Singapore: World Scientific, (2005).

Google Scholar

[13] T. Ma, S. H. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, Beijing: Science Press, 2006 (in Chinese).

Google Scholar

[14] C. K. Zhong, C. Sun, M. Niu, On the existence of global attractor for a class of infinite dimensional nonlinear dissipative dynamical systems, Chinese Ann Math, 2005, 26B(3): 1-8.

DOI: 10.1142/s0252959905000312

Google Scholar

[15] E. P. Gross, Hydrodynamics of a Superfluid Condensate, J. Math. Phys., 4, 195 (1963).

Google Scholar

[16] T. Ma, S. H. Wang, Phase transition dynamics in nonlinear sciences, to appear.

Google Scholar