[1]
M.P. Paidoussis, G.X. Li, Pipes conveying fluid: a model dynamical problem, J. Fluids Struct. 7(1993)137-204.
Google Scholar
[2]
M.P. Paidoussis, N.T. Issid, Dynamic stability of pipes conveying fluid, J. Sound Vib. 33(1974)267-294.
DOI: 10.1016/s0022-460x(74)80002-7
Google Scholar
[3]
M.P. Paidoussis, Fluid-Structure Interactions: Slender Structures and Axial Flow, Academic Press, London, (1998).
Google Scholar
[4]
J.D. Jin, Satbility and chaotic motions of a restrained pipe conveying fluid, J. Sound Vib. 208(3)(1997)427-439.
DOI: 10.1006/jsvi.1997.1195
Google Scholar
[5]
L. Wang, Q. Ni, A note on the stability and chaotic motions of a restrained pipe conveying fluid, J. Sound Vib. 296(2006)1079-1083.
DOI: 10.1016/j.jsv.2006.03.016
Google Scholar
[6]
C. Semler, G.X. Li, M.P. Paidoussis, The non-linear equations of motion of pipes conveying fluid, J. Sound Vib. 169(1994)577-599.
DOI: 10.1006/jsvi.1994.1035
Google Scholar
[7]
J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, (1983).
DOI: 10.1007/978-1-4612-1140-2
Google Scholar
[8]
A.A. Al-Qaisia, M.N. Hamdan, Subharmonic resonance and transition to chaos of nonlinear oscillators with a combined softening and hardening nonlinearities, J. Sound Vib. 305(2007)772-782.
DOI: 10.1016/j.jsv.2007.04.041
Google Scholar
[9]
K.H. Kwek, J.B. Li, Chaotic dynamics and subharmoic bifurcations in a non-lnear system, Int. J. Non-Linear Mech. 31(3)(1996)277-295.
DOI: 10.1016/0020-7462(95)00068-2
Google Scholar
[10]
R.S. Zounes, R.H. Rand, Subharmonic resonance in the non-linear Mathieu equation, Int. J. Non-Linear Mech. 37(2002)43-73.
DOI: 10.1016/s0020-7462(00)00095-0
Google Scholar
[11]
K.V. Avramov, A qualitative analysis of the subharmonic oscillations of a parametrically excited flexible rod, J. Appl. Math. Mech. 70(2006)284-291.
DOI: 10.1016/j.jappmathmech.2006.06.013
Google Scholar