[1]
D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic, Nature 407(2000)487-490.
DOI: 10.1038/35035023
Google Scholar
[2]
D. Helbing, Traffic and related self-driven many-particle systems, Rev. Mod. Phys. 73(2001) 1067-1141.
DOI: 10.1103/revmodphys.73.1067
Google Scholar
[3]
M. Fukui, Y. Ishibashi, Self-organized phase transitions in CA-models for pedestrians, J. Phys. Soc. Japan 8 (1999)2861-2863.
DOI: 10.1143/jpsj.68.2861
Google Scholar
[4]
A. Kirchner, A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automation model for pedestrian dynamics, Physica A 312(2002)260-276.
DOI: 10.1016/s0378-4371(02)00857-9
Google Scholar
[5]
R.Y. Guo, H.J. Huang, A mobile lattice gas model for simulating pedestrian evacuation, Physica A 387(2008)580-586.
DOI: 10.1016/j.physa.2007.10.001
Google Scholar
[6]
Y.Q. Jiang, S.C. Wong, P. Zhang, R.X. Liu, Y.L. Duan, Numerical simulation of a continuum model for bi-directional pedestrian flow, Appl. Math. Comput. 218(2012) 6135-6143.
Google Scholar
[7]
Y.Q. Jiang, S.C. Wong, P. Zhang, R.X. Liu, Y.L. Duan, Numerical simulation of pedestrian flow past a circular obstruction, Acta Mech. Sin. 27(2011)215-221.
DOI: 10.1007/s10409-011-0421-4
Google Scholar
[8]
L. Huang, S.C. Wong, M.P. Zhang, C.W. Shu, W.H.K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Trans Res Part B 43(2009)127-141.
DOI: 10.1016/j.trb.2008.06.003
Google Scholar
[9]
N. Bellomo, C. Dogbe, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Mod. Meth. Appl. S. 18(2008)1317-1345.
DOI: 10.1142/s0218202508003054
Google Scholar
[10]
Y.Q. Jiang, P. Zhang, S.C. Wong, R.X. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389(2010)4623-4635.
DOI: 10.1016/j.physa.2010.05.003
Google Scholar