[1]
H. Sofuoglu and J. Rasty, on the measurement of friction coefficient utilizing the ring compression test, Tribol. Int. 32 (1999) 327-335.
DOI: 10.1016/s0301-679x(99)00055-9
Google Scholar
[2]
M. Plancak, F. Vollertsen and J. Woitschig, Analysis, finite element simulation and experimental investigation of friction in tube hydroforming, J. Mater Process Tech. (2005) 220-228.
DOI: 10.1016/j.jmatprotec.2005.04.109
Google Scholar
[3]
M. Plancak, Z. Car, and M. Krsulja, Possibilities to measure contact friction in bulk metal forming, Teh. Vjesn. 19 (2012) 727-734.
Google Scholar
[4]
Y. S. Kim, M. K. Jain and D. R. Metzger, Determination of pressure-dependent friction coefficient from draw-bend test and its application to cup drawing, Int. J. Mach Tool Manu. 56 (2012) 69-78.
DOI: 10.1016/j.ijmachtools.2011.12.011
Google Scholar
[5]
H. W. Wagener and J. Wolf, Coefficient of friction in cold extrusion, J. Mater Process Tech. 44 (1994) 283-291.
Google Scholar
[6]
Y. M. Hwang and L. S. Huang, Friction tests in tube hydroforming, Institution of Mechanical Engineers. (2005) 587-593.
Google Scholar
[7]
S. H. Kang, K. S. Lee and Y. S. Lee, Evaluation of interfacial friction condition by boss and rib test based on backward extrusion, Int. J. Mech Sci. 53 (2011) 59-64.
DOI: 10.1016/j.ijmecsci.2010.11.001
Google Scholar
[8]
J. C. Hung, C. C. Huang, Evaluation of friction in ultrasonic vibration-assisted press forging using double cup extrusion tests, Int. J. Precis Eng Man. 13 (2012) 2103-2108.
DOI: 10.1007/s12541-012-0278-x
Google Scholar
[9]
Q. Zhang, E. Felder and S. Bruschi, Evaluation of friction condition in cold forging by using T-shape compression test. J. Mater Process Tech. 209 (2009) 5720-5729.
DOI: 10.1016/j.jmatprotec.2009.06.002
Google Scholar