Oxygen Partial Pressure Effect on Nano-Structure and NO Gas Detection Sensitivity of Sputtered MoO3 Thin Films

Article Preview

Abstract:

This paper explains the influence of oxygen partial pressure on crystallographic structure, surface morphology and sensing properties of sputtered MoO3 thin films. The MoO3 thin films were deposited by DC reactive magnetron sputtering technique on glass substrate at different oxygen partial pressures in the range of 5×10-5-4×10-4 mbar. X-ray diffraction (XRD) results showed that all prepared films were polycrystalline of α-MoO3 stable orthorhombic phase. Atomic force microscopy (AFM) images depicted a needle-like structure for deposited film at lowest oxygen partial pressure (5×10-5 mbar) and a granular structure for formed samples at higher oxygen partial pressures (1×10-4 and 2×10-4 mbar). These results also showed that increasing of oxygen partial pressure up to 2×10-4 mbar caused increasing of grains size and surface roughness, while an increase in oxygen partial pressure to the highest pressure (4×10-4 mbar) had an inverse effect. The electrical response of samples was measured in vacuum and NO environments in the temperature range of 150-350 K. This study showed that the NO gas detection sensitivity of MoO3 thin films improved with increasing of oxygen partial pressure up to 2×10-4 mbar, and then decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-190

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.O. Korolkoff, Survey of toxic gas sensors and monitoring system, Solid State Technology (32) (12) (1989) 49–64.

Google Scholar

[2] N. Yamazoe, N. Miura, Environmental gas sensing, Sensors and Actuators B (20) (1994) 95–102.

DOI: 10.1016/0925-4005(93)01183-5

Google Scholar

[3] M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, Physical Properties of Molybdenum Oxide Thin Films for NO Gas Detection, Phys. Stat. Sol. (a) 168 (1998) 249-256.

DOI: 10.1002/(sici)1521-396x(199807)168:1<249::aid-pssa249>3.0.co;2-9

Google Scholar

[4] V. Guidi, G.C. Cardinali, L. Dori, G. Faglia, M. Ferroni, G. Martinelli, P. Nelli, G. Sberveglieri, Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure, Sens. Actuators B 49 (1998) 88–92.

DOI: 10.1016/s0925-4005(98)00039-2

Google Scholar

[5] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, A new preparation method for sputtered MoO3 multilayers for the application in gas sensors, Sens. Actuators B 78 (1–3) (2001) 119–125.

DOI: 10.1016/s0925-4005(01)00801-2

Google Scholar

[6] M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, M. Sacerdoti, G. Sberveglieri, Characterization of a molybdenum oxide sputtered thin film as a gas sensor, Thin Solid Films 307 (1–2) (1997) 148–151.

DOI: 10.1016/s0040-6090(97)00279-4

Google Scholar

[7] S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T.K. Seshagiri, T. Gnanasekaran, Electrical conductivity and gas sensing properties of MoO3, Sens. Actuators B 101 (1–2) (2004) 161–174.

DOI: 10.1016/j.snb.2004.02.048

Google Scholar

[8] D.S. Lee, S.D. Han, D.D. Lee, Y.M. Son, Fabrication and NOx sensing characteristics of WO3 doped with SnO2 and Pt thick film devices, Journal of the Korean Sensors Society 5 (5) (1996)47–54.

Google Scholar

[9] A.A. Tomchenko, V.V. Khatko, I.L. Emelianov, WO3 thick-film gas sensors, Sensors and Actuators, B 46 (1998) 8–14.

DOI: 10.1016/s0925-4005(97)00315-8

Google Scholar

[10] P. Nelli, L.E. Depero, M. Ferroni, S. Groppelli, V. Guidi, F. Ronconi, F. Sangaletti, G. Sberveglieri, Sub-ppm NO2 sensors based on nanosized thin films of titanium–tungsten oxides, Sensors and Actuators, B 31 (1996) 89–92.

DOI: 10.1016/b978-0-444-82312-0.50044-x

Google Scholar

[11] C. Imawan, F. Solzbacher, H. Steffes, E. Obermeier, Gas-sensing characteristics of modified-MoO3 thin films using Ti-overlayers for NH3 gas sensors, Sens. Actuators B 64 (1–3) (2000) 193–197.

DOI: 10.1016/s0925-4005(99)00506-7

Google Scholar

[12] S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T. Gnanasekaran, Gas sensing properties of PLD made MoO3 films, Sens. Actuators B 94 (2) (2003) 189–196.

DOI: 10.1016/s0925-4005(03)00342-3

Google Scholar

[13] H.M. Martínez, J. Torres, M.E. Rodríguez-García, L.D. López Carreńo, Gas sensingpropertiesofnanostructuredMoO3 thin filmspreparedby spray pyrolysis, Physica B 407 (2012) 3199–3202.

DOI: 10.1016/j.physb.2011.12.064

Google Scholar

[14] V. Nirupama, K.R. Gunasekhar, B. Sreedhar, S. Uthanna, Effect of oxygen partial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films, Current Appl. Phys. 10 (2010) 272–278.

DOI: 10.1016/j.cap.2009.06.005

Google Scholar

[15] S.V.J. Chandra, S. Uthanna, G. Mohan Rao, Effect of substrate temperature on the structural, optical and electrical properties of dc magnetron sputtered tantalum oxide films, Appl. Surf. Sci. 254 (2008) 1953-(1960).

DOI: 10.1016/j.apsusc.2007.08.005

Google Scholar

[16] J. Heller, Reactive sputtering of metal oxidizing atmosphere, Thin Solid Films 17 (1973) 163-176.

DOI: 10.1016/0040-6090(73)90125-9

Google Scholar

[17] A. Papakondylis, P. Sautet, Ab initio study of the structure of a-MoO3 solid and study of the adsorption of H2O and CO molecules on its (100) surface, J. Phys. Chem. 100 (1996) 10681-10688.

DOI: 10.1021/jp953727w

Google Scholar

[18] K. Hermanna, M. Witkob, A. Michalak, Density functional studies of the electronic structure and adsorption at molybdenum oxide surfaces, Catal. Today 50 (1999) 567-577.

DOI: 10.1016/s0920-5861(98)00491-x

Google Scholar