[1]
N.O. Korolkoff, Survey of toxic gas sensors and monitoring system, Solid State Technology (32) (12) (1989) 49–64.
Google Scholar
[2]
N. Yamazoe, N. Miura, Environmental gas sensing, Sensors and Actuators B (20) (1994) 95–102.
DOI: 10.1016/0925-4005(93)01183-5
Google Scholar
[3]
M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, Physical Properties of Molybdenum Oxide Thin Films for NO Gas Detection, Phys. Stat. Sol. (a) 168 (1998) 249-256.
DOI: 10.1002/(sici)1521-396x(199807)168:1<249::aid-pssa249>3.0.co;2-9
Google Scholar
[4]
V. Guidi, G.C. Cardinali, L. Dori, G. Faglia, M. Ferroni, G. Martinelli, P. Nelli, G. Sberveglieri, Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure, Sens. Actuators B 49 (1998) 88–92.
DOI: 10.1016/s0925-4005(98)00039-2
Google Scholar
[5]
C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, A new preparation method for sputtered MoO3 multilayers for the application in gas sensors, Sens. Actuators B 78 (1–3) (2001) 119–125.
DOI: 10.1016/s0925-4005(01)00801-2
Google Scholar
[6]
M. Ferroni, V. Guidi, G. Martinelli, P. Nelli, M. Sacerdoti, G. Sberveglieri, Characterization of a molybdenum oxide sputtered thin film as a gas sensor, Thin Solid Films 307 (1–2) (1997) 148–151.
DOI: 10.1016/s0040-6090(97)00279-4
Google Scholar
[7]
S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T.K. Seshagiri, T. Gnanasekaran, Electrical conductivity and gas sensing properties of MoO3, Sens. Actuators B 101 (1–2) (2004) 161–174.
DOI: 10.1016/j.snb.2004.02.048
Google Scholar
[8]
D.S. Lee, S.D. Han, D.D. Lee, Y.M. Son, Fabrication and NOx sensing characteristics of WO3 doped with SnO2 and Pt thick film devices, Journal of the Korean Sensors Society 5 (5) (1996)47–54.
Google Scholar
[9]
A.A. Tomchenko, V.V. Khatko, I.L. Emelianov, WO3 thick-film gas sensors, Sensors and Actuators, B 46 (1998) 8–14.
DOI: 10.1016/s0925-4005(97)00315-8
Google Scholar
[10]
P. Nelli, L.E. Depero, M. Ferroni, S. Groppelli, V. Guidi, F. Ronconi, F. Sangaletti, G. Sberveglieri, Sub-ppm NO2 sensors based on nanosized thin films of titanium–tungsten oxides, Sensors and Actuators, B 31 (1996) 89–92.
DOI: 10.1016/b978-0-444-82312-0.50044-x
Google Scholar
[11]
C. Imawan, F. Solzbacher, H. Steffes, E. Obermeier, Gas-sensing characteristics of modified-MoO3 thin films using Ti-overlayers for NH3 gas sensors, Sens. Actuators B 64 (1–3) (2000) 193–197.
DOI: 10.1016/s0925-4005(99)00506-7
Google Scholar
[12]
S.S. Sunu, E. Prabhu, V. Jayaraman, K.I. Gnanasekar, T. Gnanasekaran, Gas sensing properties of PLD made MoO3 films, Sens. Actuators B 94 (2) (2003) 189–196.
DOI: 10.1016/s0925-4005(03)00342-3
Google Scholar
[13]
H.M. Martínez, J. Torres, M.E. Rodríguez-García, L.D. López Carreńo, Gas sensingpropertiesofnanostructuredMoO3 thin filmspreparedby spray pyrolysis, Physica B 407 (2012) 3199–3202.
DOI: 10.1016/j.physb.2011.12.064
Google Scholar
[14]
V. Nirupama, K.R. Gunasekhar, B. Sreedhar, S. Uthanna, Effect of oxygen partial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films, Current Appl. Phys. 10 (2010) 272–278.
DOI: 10.1016/j.cap.2009.06.005
Google Scholar
[15]
S.V.J. Chandra, S. Uthanna, G. Mohan Rao, Effect of substrate temperature on the structural, optical and electrical properties of dc magnetron sputtered tantalum oxide films, Appl. Surf. Sci. 254 (2008) 1953-(1960).
DOI: 10.1016/j.apsusc.2007.08.005
Google Scholar
[16]
J. Heller, Reactive sputtering of metal oxidizing atmosphere, Thin Solid Films 17 (1973) 163-176.
DOI: 10.1016/0040-6090(73)90125-9
Google Scholar
[17]
A. Papakondylis, P. Sautet, Ab initio study of the structure of a-MoO3 solid and study of the adsorption of H2O and CO molecules on its (100) surface, J. Phys. Chem. 100 (1996) 10681-10688.
DOI: 10.1021/jp953727w
Google Scholar
[18]
K. Hermanna, M. Witkob, A. Michalak, Density functional studies of the electronic structure and adsorption at molybdenum oxide surfaces, Catal. Today 50 (1999) 567-577.
DOI: 10.1016/s0920-5861(98)00491-x
Google Scholar