Control of PMSG Wind Energy Conversion System with TS Fuzzy State-Feedback Controller

Article Preview

Abstract:

This paper presents a Takagi-Sugeno (TS) fuzzy state-feedback controller based on a linear matrix inequality (LMI) approach for the permanent magnet synchronous generator of wind energy conversion system (PMSG-WECS). A dc/dc converter is considered to regulate the maximum power output of the system. To show its effectiveness, the dynamic model is replaced by the TS fuzzy model, which the proposed controller can be applied to the PMSG-WECS, while the controller gains can be obtained by solving set of a LMI approach. The proposed controller guarantees the stability of the system. Therefore, the performance of the proposed TS fuzzy state-feedback controller is assessed through the computer simulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

728-732

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Chinchilla, S. Arnalts, and J. C. Burgos, in: Control of permanent magnet generators applied to variable speed wind energy systems connected to the grid, IEEE Trans. Ener. Conv., vol. 21, no. 1 (2006).

DOI: 10.1109/tec.2005.853735

Google Scholar

[2] S. Li, D. C. Wunsch, E. A. O'Hair and M. G. Giesselmann, in: Using Neural networks to estimate wind turbine power generation, IEEE Trans. Ener. Conv., vol. 16, no. 3 (2001), pp.276-282.

DOI: 10.1109/60.937208

Google Scholar

[3] H. Li, K. L. Shi and P. G. McLaren, in: Neural-network-based sensorless maximum wind energy capture with compensated power coefficient, IEEE Trans. Ind. Appl., vol. 41, no. 6 (2005) pp.1548-1556.

DOI: 10.1109/tia.2005.858282

Google Scholar

[4] M. H. Ali, M. Park, I. Yu, T. Murata and J. Tamura, in: Improvement of wind generator stability by fuzzy logic controlled SMES, IEEE Trans. Ind. Appl., vol. 45, no. 3 (2009), pp.1045-1051.

DOI: 10.1109/tia.2009.2018901

Google Scholar

[5] M. Azouz, A. Shaltout and M. A. L. Elshafei, in: Fuzzy logic control of wind energy system, Proc. Inter. Middle East Power Syst., id 311 (2010), pp.935-940.

Google Scholar

[6] F. valenciaga and P. F. Puleston, in: Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy, IEEE Trans. Ener. Convers., vol. 20, no. 2 (2005), pp.398-405.

DOI: 10.1109/tec.2005.845524

Google Scholar

[7] W. Qi, J. Liu, X. Chen and P. D. Christofides, in: Supervisory predictive control of standalone wind/solar energy generation systems, IEEE Trans. Cont. Syst. Tech., (2010), pp.1-9.

DOI: 10.1109/tcst.2010.2041930

Google Scholar

[8] D. J. Hill, and P. J. Moylan, in: Dissipative dynamical systems: Basic input-output and state properties, J. Franklin Inst., vol. 309 (1980), pp.327-357.

DOI: 10.1016/0016-0032(80)90026-5

Google Scholar

[9] T. Takagi and M. Sugeno, in: Fuzzy identification of systems and its applications to model and control, IEEE Trans. on Syst. Management, vol. SMC-15, no. 1 (1985), pp.116-132.

DOI: 10.1109/tsmc.1985.6313399

Google Scholar

[10] W. Assawinchaichote, S. K. Nguang and P. Shi, in: fuzzy state feedback control design for nonlinear systems with D stability constraints: An LMI approach, SciDirect. Math. Com. Sim. (2008), pp.514-531.

DOI: 10.1016/j.matcom.2007.07.002

Google Scholar

[11] W. Assawinchaichote, in: A non-fragileoutput feedback controller for uncertain fuzzy dynamical systems with multiple time-scales, " Int. J. Computer, Communications&Control (2012), pp.8-19.

DOI: 10.15837/ijccc.2012.1.1419

Google Scholar