[1]
Pradhan, A. K., Routray, A. & Basak, Power System Frequency Estimation Using Least Mean Square technique, IEEE Transactions on Power Delivery 20(3): 1812–1816. (2005).
DOI: 10.1109/tpwrd.2004.843453
Google Scholar
[2]
D. W. P. Thomas, M. S. Woolfson, Evaluation of Frequency Tracking Methods, IEEE Trans. Power Delivery, Vol. 16, No. 3, pp.367-371, (2001).
DOI: 10.1109/61.924812
Google Scholar
[3]
V. Kaura, V. Blasko, Operation of a Phase Locked Loop System Under Distorted Utility Conditions, " IEEE Trans. Industry Applications, Vol. 33, No. 1, pp.58-63, (1997).
DOI: 10.1109/28.567077
Google Scholar
[4]
S. -K. Chung, A phase Tracking System For Three Phase Utility Interface Inverters, IEEE Trans. Power Electronics, Vol. 15, No. 3, pp.431-438, (2000).
DOI: 10.1109/63.844502
Google Scholar
[5]
H. Karimi, M. Karimi, M. R. Iravani, Estimation of Frequency and Its Rate of Change for Applications in Power , IEEE Trans. Power Delivery, Vol. 19, No. 2, pp.472-480, (2004).
DOI: 10.1109/tpwrd.2003.822957
Google Scholar
[6]
Girgis, A. A. & Ham, F. M. (1982). A new FFT-Based Digital Frequency Relay for Load Shedding, IEEE Transactions on Power Apparatus and Systems PAS-101(2): 433–439.
DOI: 10.1109/tpas.1982.317125
Google Scholar
[7]
Kusljevic, M. D., Tomic, J. J. & Jovanovic, L. D, Frequency Estimation of Three-Phase Power System Using Weighted-Least-Square Algorithm and Adaptive Filter, IEEE Transactions on Instrumentation and Measurement 59(2): 322–329. . (2010).
DOI: 10.1109/tim.2009.2023816
Google Scholar
[8]
Dash, P. K., Padhan, A. K. Panda, G. Frequency Estimation of Distorted Power System Signals Using Extended Complex Kalman filter, IEEE Trans on Power Delivery 14(3): 761–766.
DOI: 10.1109/61.772312
Google Scholar
[9]
Dash, P. K., Swain, D. P., Routray, A. & Liew, A. C. (1997). An adaptive Neural Network Approach for the Estimation of Power System Frequency, Electric Power Systems Research 41: 203–210.
DOI: 10.1016/s0378-7796(96)01186-8
Google Scholar
[10]
V. V. Terzija, M. B. Djuric, B. D. Kovacevic, Voltage Phasor and local System Frequency Estimation using Newton-type algorithms, " IEEE Trans. Power Delivery, Vol. 9, No. 3, pp.1368-1374, (1994).
DOI: 10.1109/61.311162
Google Scholar
[11]
Farhang-Boroujeny, Adaptive Filters: Theory and Applications, John Wiley & Sons, Inc. (1999).
Google Scholar
[12]
P. K. Dash, A. K. Pradhan, and G. Panda, Frequency Estimation of Distorted Power System Signals Using Extended Complex Kalman filter, IEEE Trans. Power Del., vol. 14, no. 3, p.761–766, Jul. (1999).
DOI: 10.1109/61.772312
Google Scholar
[13]
B. Widrow, J. Mccool, and M. Ball, The Complex LMS Algorithm, Proc. IEEE, vol. 55, p.719–720, (1974).
DOI: 10.1109/proc.1975.9807
Google Scholar
[14]
J. A. Apolinario Jr, QRD-RLS Adaptive Filtering, Springer, (2009).
Google Scholar
[15]
R. H. Kwong and E. W. Johnston, A variable Step Size LMS Algorithm, IEEE Trans. Signal Processing, vol. 40, no. 7, p.1633–1642, Jul. (1992).
DOI: 10.1109/78.143435
Google Scholar
[16]
K. Mayyas and T. Aboulnasr , A Robust Variable Step Size LMS-Type Algorithm, Analysis and Simulations , IEEE Transactions on Signal Processing , Vol. 45, pp.631-639, March1997.
DOI: 10.1109/78.558478
Google Scholar
[17]
H. Izzeldin, V. S. Asirvadam, and N. Saad, Online Sliding-Window Based for Training MLP Networks Using Advanced Conjugate Gradient, in IEEE 7th International Colloquium on Signal Processing and its Applications (CSPA), pp.112-116, (2011).
DOI: 10.1109/cspa.2011.5759854
Google Scholar
[18]
Chan, Y.H. and Hau, S.S.F., A BLMS Algorithm With Sliding Window Function for The Application of Echo cancellation, IEEE , ICC , Technical Program, Geneva (1993).
DOI: 10.1109/icc.1993.397595
Google Scholar
[19]
M. Akke, Frequency Estimation by Demodulation of Two Complex Signals , IEEE Trans. Power Del., vol. 12, no. 1, p.157–163, Jan. (1997).
DOI: 10.1109/61.568235
Google Scholar