Thermoelectric Properties of n-Type AgPbSbTe Composites Containing Nanoscaled Phases

Article Preview

Abstract:

The effects of nanophase additions on the thermoelectric properties of n-type AgPb18SbTe20 fabricated by combining fast melting and hot pressing were investigated. The presence of sovelthermally syntheszied AgPb18SbTe20 nanospheres or nanorods in the bulk yields remarkably improved thermoelectric properties. Nanophase additions produce a reduction in the Seebeck coefficent at about 300~550 K and the maximum Seebeck coefficient absolute values are, respectively, 378 and 380 μV·K-1 for LAST-18 with nanospheres and nanorods samples. The κ values of two samples with nanophases show a lower value in the entire temperature range compared to that of LAST-18 matrix. A maximum figure of merit, ZT=0.92 at 673K for the nanorod-containing composite is achieved mainly due to the reduced thermal conductivity. Furthermore, the temperature of ZT peak shift to a higher range originated from the enlarged energy gap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

490-493

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Alam, Ramakrishna S: Nano Energy 2 (2013), p.190.

Google Scholar

[2] J.Q. He, S.N. Girard, M.G. Kanatzidis, P. Dravid: Adv. Funct. Mater. 20 (2010), p.764.

Google Scholar

[3] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis: Science 302 (2004), p.818.

Google Scholar

[4] Z.Y. Li, M. Zou, J.F. Li: J. Alloy. Comp. 549 (2013), p.319.

Google Scholar

[5] L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus: Phys. Rev. B 52 (1996), p.10493.

Google Scholar

[6] S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ail, R. Decourt: Acta Mater. 59 (2011), p.7425.

DOI: 10.1016/j.actamat.2011.07.049

Google Scholar

[7] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn: Nature 413 (2000), p.597.

Google Scholar

[8] T.C. Harman, M.P. Walsh, B.E. Laforge, G.W. Turner: J. Electron. Mater. 34, (2005), p. L19.

Google Scholar

[9] J. Martin, G.S. Nolas, W. Zhang, L. Chen: Appl. Phys. Lett. 90 (2007), p.222112.

Google Scholar

[10] J. Liu, X.G. Wang, L.M. Peng: Mater. Chem. Phys. 133 (2012), p.33.

Google Scholar

[11] Z.H. Dughaish: Phys. B 322 (2002), p.205.

Google Scholar

[12] P.P. Poudeu, A. Guéguen, C. Wu, T. Hogan, M.G. Kanatzidis: Chem. Mater. 22 (2010), p.1046.

Google Scholar

[13] H.J. Goldsmid, J.W. Sharp: J. Electron. Mater. 28 (1999), p.869.

Google Scholar