[1]
D. Comaniciu and P. Meer, Mean-Shift: A Robust Approach Toward Feature Space Analysis, On Pattern Analysis and Machine Intelligence, vol. 24, May (2002).
DOI: 10.1109/34.1000236
Google Scholar
[2]
N. Pal and S. Pal, A review on image segmentation techniques, Pattern Recognition. vol. 26, no. 9, p.1277–1294, Sep. (1993).
DOI: 10.1016/0031-3203(93)90135-j
Google Scholar
[3]
D. Comaniciu, An algorithm for data-driven bandwidth selection, Pattern Anal. Mach. Intell., vol. 25, no. 2, p.281–288, Feb. (2003).
DOI: 10.1109/tpami.2003.1177159
Google Scholar
[4]
J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, p.888–905, Aug. (2000).
DOI: 10.1109/34.868688
Google Scholar
[5]
H. D. Cheng, X. H. Jiang, Y. Sun, and J. Wang, Color image segmentation: Advances and prospects, Pattern Recognit., vol. 34, no. 12, p.2259–2281, Dec. (2001).
DOI: 10.1016/s0031-3203(00)00149-7
Google Scholar
[6]
X. R. Li, Z. Y. Hu, and F. C. Wu, A Note on the Convergence of the Mean Shift, Pattern Recognition, Vol. 40, No. 6, pp.1557-1562, (2007).
Google Scholar
[7]
Xiaotong Yuan and Stan Z. Li, Half Quadratic Analysis for Mean Shift: with Extension to A Sequential Data Mode-Seeking Method, IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, October, (2010).
DOI: 10.1109/iccv.2007.4408979
Google Scholar
[8]
Comaniciu D, Ramesh V, Meer P. Real time tracking of non rigid objects using mean shift. Computer Vision and Pattern Recognition, 2000, 4(2): 142-149.
DOI: 10.1109/cvpr.2000.854761
Google Scholar