Fabrication of Polyacrylonitrile Nanoporous Fibers via Electrospinning

Article Preview

Abstract:

This study provide several straightforward ways to fabricate nanoporous fibers with diameters in the rang from nanometers to several micrometers.The PAN nanoporous fibrous materials are unique in their ultrahigh specific surface and porous geometry and have the potential to meet emerging needs in advanced technical applications. PAN nanoporous fibers were electrospun in a single process by varying solvent compositions. Polyacrylonitrile (PAN) and Polylactide (PLA) bicomponent electrospun fibers, upon removal of the PLA by CF solvent extraction, became nanoporous. The surface morphology of the electrospun PAN fiber are investigated by a Scanning Electron Microscope (SEM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-18

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology . 7 (1996) 216–223.

DOI: 10.1088/0957-4484/7/3/009

Google Scholar

[2] R.S. Barhate, S. Ramakrishna, Nanofibrous filtering media: Filtration problems and solutions from tiny materials, J. Membr. Sci. 296 (2007) 1–8.

DOI: 10.1016/j.memsci.2007.03.038

Google Scholar

[3] Y.B. Zhu, M.F. Leong, W.F. Ong, M.B. Chan-Park, K.S. Chian, Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold, Biomaterials. 28 (2007) 861–868.

DOI: 10.1016/j.biomaterials.2006.09.051

Google Scholar

[4] S.T. Tan, J.H. Wendorff, C. Pietzonka, Z.H. Jia, G.Q. Wang, Biocompatible and Biodegradable Polymer Nanofibers Displaying Superparamagnetic Properties, Chemphyschem. 6 (2005) 1461–1465.

DOI: 10.1002/cphc.200500167

Google Scholar

[5] A.C. Patel, S.X. Li, C. Wang, W.J. Zhang, Y. Wei, Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications, Chem. Mater. 19 (2007) 1231–1238.

DOI: 10.1021/cm061331z

Google Scholar

[6] X.F. Wang, B. Ding, J.Y. Yu, M.R. Wang, F.K. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance, Nanotechnology. 21(2010) 055502.

DOI: 10.1088/0957-4484/21/5/055502

Google Scholar

[7] B. Ding, C.R. Li, Y. Hotta, J.H. Kim, O. Kuwaki, S. Shiratori, Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface, Nanotechnology. 17 (2006) 4332–4339.

DOI: 10.1088/0957-4484/17/17/009

Google Scholar

[8] S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers, Macromolecules. 35 (2002) 8456–8466.

DOI: 10.1021/ma020444a

Google Scholar

[9] Y. Miyauchi, B. Ding, S. Shiratori, Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning, Nanotechnology. 17 (2006) 5151–5156.

DOI: 10.1088/0957-4484/17/20/019

Google Scholar

[10] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J.H. Wendorff, Nanostructured Fibers via Electrospinning, Adv. Mater. 13 (2001) 70–72.

DOI: 10.1002/1521-4095(200101)13:1<70::aid-adma70>3.0.co;2-h

Google Scholar

[11] L.F. Zhang, Y.L. Hsieh, Nanoporous ultrahigh specific surface polyacrylonitrile fibres, Nanotechnology. 17 (2006) 4416–4423.

DOI: 10.1088/0957-4484/17/17/022

Google Scholar

[12] Y.Z. Zhang, Y. Feng, Z.M. Huang, S. Ramakrishna, C.T. Lim, Fabrication of porous electrospun nanofibres, Nanotechnology. 17 (2006) 901–908.

DOI: 10.1088/0957-4484/17/3/047

Google Scholar

[13] L.W. Ji, C. Saquing, S.A. Khan, X.W. Zhang, Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers, Nanotechnology. 19 (2008) 085605.

DOI: 10.1088/0957-4484/19/8/085605

Google Scholar