Effect of the Doping Ni and Overdosing Lithium for Synthesis LiMn2O4 Cathode Material by the Solid State Reaction Method

Article Preview

Abstract:

The study with Li2CO3 and Mn3O4 through the solid state reaction makes cathode material for lithium battery spinel - LiMn2O4. According to past literature, under the solid-state reaction. The experiment carries out sintering at temperature of 850°C.. Cathode materials under these sintering temperatures are made to fabricate battery. For Ni doped LiMn2O4, the capacitance decreasing speed is slow and stable; after 15 times charging-discharging cycles, the attrition rates were 3.05 % or less. The result of experiment demonstrates that the best sintering temperature is at 850°C. Under the condition of 850°C, various contents for extra amount of lithium (1.02 mole-1.1 mole) are fabricated and range of working voltage is released. It is found a further increase of initial capacity to 140.51 mAh/g. LiMn2O4 further extends circulation and usage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-97

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. G. Ritchie, J. Power Sources Vol. 96(2001), p.180.

Google Scholar

[2] A. S. Hong, J. S. Kim, K. Jaehoon, J. Supercrit. Fluids Vol. 55(2011), p.1027.

Google Scholar

[3] R. Moshtev, P. Zlatilova, V. Manev, K. Tagawa, J. Power Sources Vol. 62(1996), p.59.

DOI: 10.1016/s0378-7753(96)02402-0

Google Scholar

[4] E. Shinova, T. Mandzhukova, E. Grigorova, Solid State Ion. Vol. 187(2011), p.43.

Google Scholar

[5] I. J. Davidsona, R. S. McMillana, J. Murraya, J. Power Sources Vol. 54(1995), p.232.

Google Scholar

[6] Y. Shimakawa, T. Numata, J. Tabuchi , J. Solid State Chem. Vol. 131(1997), p.138.

Google Scholar

[7] J. B. Goodenough , Annu. Rev. Mater. Sci. Vol. 28(1998), p.1.

Google Scholar

[8] M. Tabuchi, C. Masquelier, H. Kobayashi, R. Kanno, Y. Kobayashi, T. Akai, Y. Maki, H. Kageyama, O. Nakamura, J. Power Sources Vol. 68(1996), p.623.

DOI: 10.1016/s0378-7753(96)02592-x

Google Scholar

[9] R. Alcntara, M. Jaraba, P. Lavela, J. Tirado, J. Electrochem. Soc. Vol. 151(2004), p.53.

Google Scholar

[10] K. Hideki, F. Toyokiand, T. Kazuhisa, Electrochemi. Solid State Lett. Vol. 8(2005), p.87.

Google Scholar

[11] L. P. Rabou, A. Roskam, J. Power Sources Vol. 4(1995), p.316.

Google Scholar

[12] L. D. Cheng, Takahisa, M. Lian, Y. Masaki, J. Power Sources Vol. 132(2004), p.150.

Google Scholar

[13] R. Moshtev, P. Zlatilova, V. Manev, K. Tagawa, J. Power Sources Vol. 62(1996), p.59.

DOI: 10.1016/s0378-7753(96)02402-0

Google Scholar

[14] F. Yasuhiro, H. Miura, N. Suzuki, J. Power Sources Vol. 171(2007), p.894.

Google Scholar

[15] C. Vogler, A. Butz, H. Dittricj, G. Arnold, M. W. Mehrens, J. Power Sources Vol. 84(1999), p.243.

Google Scholar

[16] K.Y. Koyama, I. Tanaka, H. Adacki, J. Power Sources Vol. 19(2003), p.664.

Google Scholar

[17] M. Wakihara, L. Guohua, H. Ikuta, T. Uchida, Solid State Ion. Vol. 86(1996), p.907.

Google Scholar

[18] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Electrochem. Soc. Vol. 143(1996), p.1067.

Google Scholar

[19] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. Dahn, J. Electrochem. Soc., 144 (1997), p.205.

Google Scholar

[20] L. Gouhua, H. Ikuta, T. Uchida , M. Wakihara, J. Electrochem. Soc., 143 (1996) , p.178.

Google Scholar

[21] J. M. Paulsen, J. R. Dahn, Chem. Mater., 11 (1999) , p.3065. PHOTOGRAPHS AND FIGURES.

Google Scholar