[1]
P.L. Hammer, A. Kogan, Horn functions and their DNFs. Inform, Process. Lett. 44 (1992) 23-29.
Google Scholar
[2]
E.H. Mercer, The keratinized tissues, in: P. Alexander, Z. M. Bacq (Eds. ), Keratin and Keratinization: An Essay in Molecular Biology, New York, 1961, pp.64-66.
Google Scholar
[3]
R.J. Goss, Deer Antlers - Regeneration, Function and Evolution, Academic Press, New York, (1983).
Google Scholar
[4]
A. Kitchener, Fracture toughness of horns and a reinterpretation of the horning behaivor of bovids, J. Zool. London 213 (1987) 621-639.
DOI: 10.1111/j.1469-7998.1987.tb03730.x
Google Scholar
[5]
B.W. Li, H.P. Zhao, X.Q. Feng, Static and dynamic mechanical properties of cattle horns, Mater. s Sci. Eng. C 31 (2011) 179-183.
Google Scholar
[6]
A. Kitchener, An analysis of the forces of fighting of the blackbuck (Antilope cervicapra) and the bighorn sheep (Ovis canadensis) and the mechanical design of the horn of bovids, J. Zool. 214 (1988) 1-20.
DOI: 10.1111/j.1469-7998.1988.tb04983.x
Google Scholar
[7]
M.W. Trim, Structure property relations and finite element analysis of ram horns: a pathway to energy absorbent bio-inspired designs. PhD thesis, Mississippi State University, (2011).
Google Scholar
[8]
A. Kitchener, J.F.V. Vincent, Composite theory and the effect of water on the stiffness of horn keratin, J. Mater. Sci. 22 (1987) 1385-1389.
DOI: 10.1007/bf01233138
Google Scholar
[9]
M.W. Trim, M.F. Horstemeyer, H. Rhee, H.E. Kadiri, L.N. Williams, J. Liao, K.B. Walters, J. McKittrick, S.J. Park, The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis canadensis) horn keratin, Acta Biomater. 7 (2011).
DOI: 10.1016/j.actbio.2010.11.024
Google Scholar
[10]
L. Tombolato, E.E. Novitskaya, P.Y. Chen, F.A. Sheppard, J. McKittrick, Microstructure, elastic properties and deformation mechanisms of horn keratin, Acta Biomater. 6 (2010) 319–330.
DOI: 10.1016/j.actbio.2009.06.033
Google Scholar
[11]
J. McKittrick, P.Y. Chen, L. Tombolato, E.E. Novitskaya, M.W. Trim, G.A. Hirata, E.A. Olevsky, M.F. Horstemeyer, M.A. Meyers, Energy absorbent natural materials and bioinspired design strategies: a review, Mater. Sci. Eng. C 30 (2010) 331-342.
DOI: 10.1016/j.msec.2010.01.011
Google Scholar
[12]
T.L. Hieronymus, L.M. Witmer, R.C. Ridgely, Structure of white rhinoceros (Ceratotherium simum) horn Investigated by X-ray computed tomography and histology with implications for growth and external form, J. Morph. 267 (2006) 1172–1176.
DOI: 10.1002/jmor.10465
Google Scholar
[13]
B.W. Li, H.P. Zhao, X.Q. Feng, W.W. Guo, S.C. Shan. Experimental study on the mechanical properties of the horn sheaths from cattle, J. Exper. Biol. 213 (2010) 479-486.
DOI: 10.1242/jeb.035428
Google Scholar
[14]
J.W.S. Hearle, A critical review of the structural mechanics of wool and hair fibres, Int. J. Biol. Macromol. 27 (2000) 123-138.
Google Scholar
[15]
A. H. W. Ngan, B. Tang, Viscoelastic effects during unloading in depth-sensing indentation, J. Mater. Res. 17 (2002) 2604-2610.
DOI: 10.1557/jmr.2002.0377
Google Scholar
[16]
T. Miyajima, F. Nagata, W. Kanematsu, Y. Yokogawa, M. Sakai, Elastic/ plastic surface deformation of porous composites subjected to spherical nanoindentation, Key Eng. Mater. 240-242 (2003) 927-930.
DOI: 10.4028/www.scientific.net/kem.240-242.927
Google Scholar
[17]
J. Tong, J. Y. Sun, D. H. Chen, S. J. Zhang, Factors Impacting nanoindentation testing results of the cuticle of dung beetle Copris ochus Motschulsky. J. Bionics Eng. 1(2004) 221-230.
DOI: 10.1109/icma.2009.5246542
Google Scholar