[1]
F. Noll, M. Sumper, N. Hampp, Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Letters. 2 (2002) 91-95.
DOI: 10.1021/nl015581k
Google Scholar
[2]
R. Gordon, et al., The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends in Biotechnology. 27 (2009) 116-127.
DOI: 10.1016/j.tibtech.2008.11.003
Google Scholar
[3]
W. Yang, P. J. Lopez, G. Rosengarten, Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst. 136 (2011) 42-53.
DOI: 10.1039/c0an00602e
Google Scholar
[4]
Y. Wang, et al., Key factors influencing the optical detection of biomolecules by their evaporative assembly on diatom frustules. Journal of Materials Science. 47 (2012) 6315-6325.
DOI: 10.1007/s10853-012-6554-4
Google Scholar
[5]
L. De Stefano, et al., Marine diatoms as optical biosensors. Biosensors & Bioelectronics. 24 (2009) 1580-1584.
DOI: 10.1016/j.bios.2008.08.016
Google Scholar
[6]
K. C. Lin, et al., Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosensors & Bioelectronics. 25 (2010) 2336-2342.
DOI: 10.1016/j.bios.2010.03.032
Google Scholar
[7]
M. De Stefano, L. De Stefano, Functional Morphology of Micro- and Nanostructures in Diatom Frustules. Phycologia. 48 (2009) 70.
DOI: 10.1016/j.spmi.2008.12.007
Google Scholar
[8]
Y. Wang, et al., Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Applied Microbiology and Biotechnology. (2012) 1-8.
DOI: 10.1007/s00253-012-4568-0
Google Scholar
[9]
A. M. Taylor, et al., A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods. 2 (2005) 599-605.
DOI: 10.1038/nmeth777
Google Scholar
[10]
S. S. Lee, et al., Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proceedings of the National Academy of Sciences of the United States of America. 109 (2012) 4916-4920.
DOI: 10.1073/pnas.1113505109
Google Scholar
[11]
C. Q. Yi, et al., Microfluidics technology for manipulation and analysis of biological cells. Analytica Chimica Acta. 560 (2006) 1-23.
DOI: 10.1016/j.aca.2005.12.037
Google Scholar
[12]
G. M. Whitesides, et al., Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering. 3 (2001) 335-373.
Google Scholar
[13]
C. W. Tsao, D. L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics. 6 (2009) 1-16.
DOI: 10.1007/s10404-008-0361-x
Google Scholar
[14]
Y. Wang, et al., Floating assembly of diatom Coscinodiscus sp. microshells. Biochemical and Biophysical Research Communications. 420 (2012) 1-5.
DOI: 10.1016/j.bbrc.2012.02.080
Google Scholar
[15]
D. Y. Zhang, et al., Hydrofluoric acid-assisted bonding of diatoms with SiO2-based substrates for microsystem application. Journal of Micromechanics and Microengineering. 22 (2012).
DOI: 10.1088/0960-1317/22/3/035021
Google Scholar