Motion Target Detection of Birds Based on Adaptive Background Update Mechanism

Article Preview

Abstract:

In view of the natural environment variability and uncertainty makes observations of some birds behavior complex and difficult, this paper proposes a Surendra adaptive background updating algorithm based on global threshold, which can update background automatically according to the environmental changes, and then extract the birds target region of interested by background subtraction and morphological filtering. The experimental results show that the birds moving target detection of video-captured has a good extraction effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-337

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Changchun Li , Nan Jiang , Jennie Si , Abousleman, G.P. Robust target detection and tracking in outdoor infrared video[C]. Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, IEEE, 2008: 1489-1492.

DOI: 10.1109/icassp.2008.4517903

Google Scholar

[2] Xiao-yan Zhang , Xiao-juan Wu ; Xin Zhou ; Xiao-gang Wang ; Yuan-yuan Zhang. Automatic detection and tracking of maneuverable birds in videos[C] . Computational Intelligence and Security, 2008. CIS '08. International Conference on  (Volume: 1) 2008. 46: 185-189.

DOI: 10.1109/cis.2008.46

Google Scholar

[3] Ohta Naoya. A statistical approach to background subtraction for surveillance systems[C]. Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, IEEE, 2001: 481-486.

DOI: 10.1109/iccv.2001.937664

Google Scholar

[4] Sheikh Yaser, Javed Omar, Kanade Takeo. Background subtraction for freely moving cameras[C]. Computer Vision, 2009 IEEE 12th International Conference on, IEEE, 2009: 1219-1225.

DOI: 10.1109/iccv.2009.5459334

Google Scholar

[5] Neri A, Colonnese S, Russo G. Automatic moving object and background separation[J]. Signal Processing, 1998, 66(2): 219-232.

DOI: 10.1016/s0165-1684(98)00007-3

Google Scholar

[6] Foresti Gian Luca. Object recognition and tracking for remote video surveillance[J]. Circuits and Systems for Video Technology, IEEE Transactions on, 1999, 9(7): 1045-1062.

DOI: 10.1109/76.795058

Google Scholar

[7] Denman Simon, Chandran Vinod, Sridharan Sridha. An adaptive optical flow technique for person tracking systems[J]. Pattern recognition letters, 2007, 28(10): 1232-1239.

DOI: 10.1016/j.patrec.2007.02.008

Google Scholar

[8] Díaz Javier, Ros Eduardo, Agís Rodrigo. Superpipelined high-performance optical-flow computation architecture[J]. Computer Vision and Image Understanding, 2008, 112(3): 262-273.

DOI: 10.1016/j.cviu.2008.05.006

Google Scholar