A Review of the Research in Measurement Error Models

Article Preview

Abstract:

The measurement error models or EV(errors-in-variables) Models have been widely promoted in the field of statistics since 1877. According to the characteristics of the errors in variables, EV models can mainly be divided into three types: the additive model, the general measurement error model and berkson measurement error model. The emphases of researches in the EV models mainly focus on the effects of model estimation, hypothesis testing and model selection. In this paper, we concentrate on the research by conducted a systematic review of EV Models, in order to make a reference for researchers and practitioners.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-71

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. J. Adcock. Analyst. 1877, 4: 183-184.

Google Scholar

[2] W. A. Fuller. John Wiley and Sons, Newyork, (1987).

Google Scholar

[3] Y.P. Chang, W.T. Huang. J. Amer. Statist. Assoc., 1997, 92(437): 171-178.

Google Scholar

[4] L.Q. Wang. J. Econometrics, 1998, 84(2): 383-400.

Google Scholar

[5] H. J. Cui, S. X. Chen. J. Mult. Anal. ,2003, 84: 101-115.

Google Scholar

[6] C. Hsiao. J. Econometrics. 1989, 41: 159-185.

Google Scholar

[7] R. J. Carroll, et al. Chapmen & Hall/CRC, London. (1995).

Google Scholar

[8] T. Li. J. Econometrics, 2002, 110(1): 1-26.

Google Scholar

[9] H. J. Cui, R. C. Li. J. Mult. Anal. ,1998, 64: 1-24.

Google Scholar

[10] H. Liang, W. Hardle and R. J. Carroll. Ann. Stati., 1999, 27(5): 1519-1535.

Google Scholar

[11] Q. Liu, et al, Acta Math. Appl. Sinica, 2005, 28(2): 296-307. (in Chinese).

Google Scholar

[12] H. J. Cui, E. F. Kong. Scan. J. Stati., 2006, 33(1): 153-168.

Google Scholar

[13] J. H. Sepanski, L. F. Lee. J. Nonp. Stati., 1995, 4: 365-394.

Google Scholar

[14] Q. H. Wang. J. Mult. Anal. ,1999, 69: 30-64.

Google Scholar

[15] Q. H. Wang, J. N. K. Rao. Biometrika. 2002, 89(2): 345-358.

Google Scholar

[16] W. Stute, L.G. Xue and L. X. Zhu. J. Ame. Stati. Asso., 2007, 102(477): 332-346.

Google Scholar

[17] L. Huwang, H.Y.S. Huang. Stat. Sinica, 2000, 10: 923-936.

Google Scholar

[18] Wang L.Q. Stat. Sinica, 2003, 13: 1201-1210.

Google Scholar

[19] Wang L.Q. Ann. Stati., 2004, 32(6): 2559-2579.

Google Scholar

[20] Delaigle A., Hall P., Qiu P.H. J. Royal Stati. Soc. , Ser. B, 2006, 68(2): 201-220.

Google Scholar

[21] Koul H.L., Song W.X. J. Stat. Plan. Infer., 2008, 138: 1615-1628.

Google Scholar

[22] H. Liang, S.W. Thurston. Biometrika, 2008, 95:667-678.

Google Scholar

[23] Y. Wei, R. J. Carroll. J. Amer. Stat. Asso., 2009, 104(487): 1129-1143.

Google Scholar

[24] H. Liang, R.Z. Li. J. Amer. Stat. Assoc. 2009, 104(485): 234–248.

Google Scholar

[25] Y. Zhou. H. Liang. Ann. Stat, 2009, 37(1), 427-458.

Google Scholar

[26] Y.Y. Ma, R.Z. Li,. Bernoulli. 2010, 16(1): 274-300.

Google Scholar

[27] H. L. Koul W.X. Song. Stat. Sinica, 2010, 20: 1551-1579.

Google Scholar

[28] Z.G. Xiao, J. Shao, M. Palta. J. Appl. Stat. 2010, 37(5): 791- 805.

Google Scholar

[29] Y.Y. Ma ,E. Ronchetti. J. Amer. Stat. Asso., 2011, 106(493): 147-156.

Google Scholar

[30] G.L. Fan, H.X. Xu, H.Y. Liang. Elec. J. Stat. 2012, 6: 1040-1058.

Google Scholar

[31] H. J. Wang,L. A. Stefanski Z.Y. Zhu. Biometrika,2012,99 (2): 405-421.

Google Scholar