A Review: Effect of Sintering Method on the Decomposition of Hydroxyapatite and Density of Hydroxyapatite Zirconia Composites

Article Preview

Abstract:

Hydroxyapatite (HA) is a biomaterial with excellent biocompatibility. However, the brittleness and low fracture toughness of HA have limited its biomedical applications. As such, HA has been incorporated with zirconia (ZrO2) to enhance its mechanical strength. However, ZrO2 addition decreases the phase stability of HA. HA decomposition is not favored because it decreases the mechanical strength of HA/ZrO2. In this paper, the effect of sintering on HA decomposition is reviewed. Experimental results show that hot isostatic pressing of HA/ZrO2 is one of the most effective methods to suppress HA decomposition, yielding the highest relative density compared with other sintering methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

843-846

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. J. O'Brien, Dental Materials and Their Selection, Quintessence Publishing Co, Inc., (2009).

Google Scholar

[2] S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng, Rapid densification of nanocrystalline hydroxyapatite for biomedical applications, Ceram. Int. 33(7) (2007) 1363-1367.

DOI: 10.1016/j.ceramint.2006.05.009

Google Scholar

[3] S. Ramesh, C.Y. Tan, R. Tolouei, M. Amiriyan, J. Purbolaksono, I. Sopyan, W.D. Teng, Sintering behavior of hydroxyapatite prepared from different routes, Mater. & Des. 34(0) (2012) 148-154.

DOI: 10.1016/j.matdes.2011.08.011

Google Scholar

[4] B. Nasiri-Tabrizi, A. Fahami, R. Ebrahimi-Kahrizsangi, Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials, Ceram. Int. 39(5) (2013) 5751-5763.

DOI: 10.1016/j.ceramint.2012.12.093

Google Scholar

[5] W. Siswomihardjo, S. Sunarintyas, A.E. Tontowi, The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth, Int. J. of Biomater. (2012) 4.

DOI: 10.1155/2012/432372

Google Scholar

[6] S. Ramesh, C.Y. Tan, I. Sopyan, M. Hamdi, W.D. Teng, Consolidation of nanocrystalline hydroxyapatite powder. Sci. and Tech. of Ad. Mater., Sci. and Tech. of Ad. Mater. 8(1–2) (2007) 124-130.

DOI: 10.1016/j.stam.2006.11.002

Google Scholar

[7] V.V. Silva, F.S. Lameiras, Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite, Mater. Characterization. 45(1) (2000) 51-59.

DOI: 10.1016/s1044-5803(00)00048-6

Google Scholar

[8] M.A.F. Afzal, P. Kesarwani, K.M. Reddy, S. Kalmodia, B. Basu, K. Balani, Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility, Mater. Sci. and Eng.: C. 32(5) (2012) 1164-1173.

DOI: 10.1016/j.msec.2012.03.003

Google Scholar

[9] X. Miao, Y. Chen, H. Guo, K.A. Khor, Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites, Ceram. Int. 30(7) (2004) 1793-1796.

DOI: 10.1016/j.ceramint.2003.12.117

Google Scholar

[10] Z. Evis, M. Usta, I. Kutbay, Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites, J Eur Ceram Soc. 29(4) (2009) 8-8.

DOI: 10.1016/j.jeurceramsoc.2008.07.020

Google Scholar

[11] A. Rapacz-Kmita, A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiewicz, Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement, J. of Mol. Struc. 704(1–3) (2004) 333-340.

DOI: 10.1016/j.molstruc.2004.02.047

Google Scholar

[12] P. Parente, B. Savoini, B. Ferrari, M.A. Monge, R. Pareja, A.J. Sanchez-Herencia, Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite, Mater. Sci. and Eng. 33(2) (2013) 864-869.

DOI: 10.1016/j.msec.2012.11.013

Google Scholar

[13] C.J. Liao, F.H. Lin, K.S. Chen, J.S. Sun, Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, J. Biomater. 20(19) (1999) 1807-1813.

DOI: 10.1016/s0142-9612(99)00076-9

Google Scholar

[14] D. Curran, T. Fleming, M. Towler, S. Hampshire, Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods, J. Mater Sci: Mater Med. 21(4) (2010) 1109-1120.

DOI: 10.1007/s10856-009-3974-z

Google Scholar

[15] C.Y. Chiu, H.C. Hsu, W.H. Tuan, Effect of zirconia addition on the microstructural evolution of porous hydroxyapatite, Ceram. Int. 33(5) (2007) 715-718.

DOI: 10.1016/j.ceramint.2005.12.008

Google Scholar

[16] K.A. Khalil, S.W. Kim, H.Y. Kim, Consolidation and mechanical properties of nanostructured hydroxyapatite–(ZrO2 + 3mol% Y2O3) bioceramics by high-frequency induction heat sintering, Mater. Sci. & Eng. 456(1–2) (2007) 368-372.

DOI: 10.1016/j.msea.2006.12.005

Google Scholar

[17] S. Ramesh, K.L. Aw, R. Tolouei, M. Amiriyan, C.Y. Tan, M. Hamdi, J. Purbolaksono, M.A. Hassan, W.D. Teng, Sintering properties of hydroxyapatite powders prepared using different methods, Ceram. Int. 39(1) (2013) 111-119.

DOI: 10.1016/j.ceramint.2012.05.103

Google Scholar

[18] M.R. Towler, I.R. Gibson, The effect of low levels of zirconia addition on the mechanical properties of hydroxyapatite, J. of Mater. Sci. Letters. 20(18) (2001) 1719-1722.

Google Scholar

[19] M. Mazaheri, M. Haghighatzadeh, A.M. Zahedi, S.K. Sadrnezhaad, Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics, J. of Alloys and Compounds. 471(1–2) (2009) 180-184.

DOI: 10.1016/j.jallcom.2008.03.066

Google Scholar

[20] C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceram. Int. 37(3) (2011) 935-942.

DOI: 10.1016/j.ceramint.2010.11.001

Google Scholar

[21] M.D. McNeese, D.C. Lagoudas, T.C. Pollock, Processing of TiNi from elemental powders by hot isostatic pressing, Mater. Sci. & Eng. 280(2) (2000) 334-348.

DOI: 10.1016/s0921-5093(99)00550-x

Google Scholar

[22] R.A. Donald, P. P Pradeep, The Science and Engineering of Materials, Thomsom Learning, Singapore, (2006).

Google Scholar

[23] G.E. Gazza, R.N. Katz, Densification of Ceramics by Gas Overpressure Sintering, MRS Online Proceedings Library (1991) 251.

DOI: 10.1557/proc-251-199

Google Scholar