[1]
W. J. O'Brien, Dental Materials and Their Selection, Quintessence Publishing Co, Inc., (2009).
Google Scholar
[2]
S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng, Rapid densification of nanocrystalline hydroxyapatite for biomedical applications, Ceram. Int. 33(7) (2007) 1363-1367.
DOI: 10.1016/j.ceramint.2006.05.009
Google Scholar
[3]
S. Ramesh, C.Y. Tan, R. Tolouei, M. Amiriyan, J. Purbolaksono, I. Sopyan, W.D. Teng, Sintering behavior of hydroxyapatite prepared from different routes, Mater. & Des. 34(0) (2012) 148-154.
DOI: 10.1016/j.matdes.2011.08.011
Google Scholar
[4]
B. Nasiri-Tabrizi, A. Fahami, R. Ebrahimi-Kahrizsangi, Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials, Ceram. Int. 39(5) (2013) 5751-5763.
DOI: 10.1016/j.ceramint.2012.12.093
Google Scholar
[5]
W. Siswomihardjo, S. Sunarintyas, A.E. Tontowi, The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth, Int. J. of Biomater. (2012) 4.
DOI: 10.1155/2012/432372
Google Scholar
[6]
S. Ramesh, C.Y. Tan, I. Sopyan, M. Hamdi, W.D. Teng, Consolidation of nanocrystalline hydroxyapatite powder. Sci. and Tech. of Ad. Mater., Sci. and Tech. of Ad. Mater. 8(1–2) (2007) 124-130.
DOI: 10.1016/j.stam.2006.11.002
Google Scholar
[7]
V.V. Silva, F.S. Lameiras, Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite, Mater. Characterization. 45(1) (2000) 51-59.
DOI: 10.1016/s1044-5803(00)00048-6
Google Scholar
[8]
M.A.F. Afzal, P. Kesarwani, K.M. Reddy, S. Kalmodia, B. Basu, K. Balani, Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility, Mater. Sci. and Eng.: C. 32(5) (2012) 1164-1173.
DOI: 10.1016/j.msec.2012.03.003
Google Scholar
[9]
X. Miao, Y. Chen, H. Guo, K.A. Khor, Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites, Ceram. Int. 30(7) (2004) 1793-1796.
DOI: 10.1016/j.ceramint.2003.12.117
Google Scholar
[10]
Z. Evis, M. Usta, I. Kutbay, Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites, J Eur Ceram Soc. 29(4) (2009) 8-8.
DOI: 10.1016/j.jeurceramsoc.2008.07.020
Google Scholar
[11]
A. Rapacz-Kmita, A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiewicz, Phase stability of hydroxyapatite–zirconia (HAp–ZrO2) composites for bone replacement, J. of Mol. Struc. 704(1–3) (2004) 333-340.
DOI: 10.1016/j.molstruc.2004.02.047
Google Scholar
[12]
P. Parente, B. Savoini, B. Ferrari, M.A. Monge, R. Pareja, A.J. Sanchez-Herencia, Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite, Mater. Sci. and Eng. 33(2) (2013) 864-869.
DOI: 10.1016/j.msec.2012.11.013
Google Scholar
[13]
C.J. Liao, F.H. Lin, K.S. Chen, J.S. Sun, Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, J. Biomater. 20(19) (1999) 1807-1813.
DOI: 10.1016/s0142-9612(99)00076-9
Google Scholar
[14]
D. Curran, T. Fleming, M. Towler, S. Hampshire, Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods, J. Mater Sci: Mater Med. 21(4) (2010) 1109-1120.
DOI: 10.1007/s10856-009-3974-z
Google Scholar
[15]
C.Y. Chiu, H.C. Hsu, W.H. Tuan, Effect of zirconia addition on the microstructural evolution of porous hydroxyapatite, Ceram. Int. 33(5) (2007) 715-718.
DOI: 10.1016/j.ceramint.2005.12.008
Google Scholar
[16]
K.A. Khalil, S.W. Kim, H.Y. Kim, Consolidation and mechanical properties of nanostructured hydroxyapatite–(ZrO2 + 3mol% Y2O3) bioceramics by high-frequency induction heat sintering, Mater. Sci. & Eng. 456(1–2) (2007) 368-372.
DOI: 10.1016/j.msea.2006.12.005
Google Scholar
[17]
S. Ramesh, K.L. Aw, R. Tolouei, M. Amiriyan, C.Y. Tan, M. Hamdi, J. Purbolaksono, M.A. Hassan, W.D. Teng, Sintering properties of hydroxyapatite powders prepared using different methods, Ceram. Int. 39(1) (2013) 111-119.
DOI: 10.1016/j.ceramint.2012.05.103
Google Scholar
[18]
M.R. Towler, I.R. Gibson, The effect of low levels of zirconia addition on the mechanical properties of hydroxyapatite, J. of Mater. Sci. Letters. 20(18) (2001) 1719-1722.
Google Scholar
[19]
M. Mazaheri, M. Haghighatzadeh, A.M. Zahedi, S.K. Sadrnezhaad, Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics, J. of Alloys and Compounds. 471(1–2) (2009) 180-184.
DOI: 10.1016/j.jallcom.2008.03.066
Google Scholar
[20]
C. Ergun, Enhanced phase stability in hydroxylapatite/zirconia composites with hot isostatic pressing, Ceram. Int. 37(3) (2011) 935-942.
DOI: 10.1016/j.ceramint.2010.11.001
Google Scholar
[21]
M.D. McNeese, D.C. Lagoudas, T.C. Pollock, Processing of TiNi from elemental powders by hot isostatic pressing, Mater. Sci. & Eng. 280(2) (2000) 334-348.
DOI: 10.1016/s0921-5093(99)00550-x
Google Scholar
[22]
R.A. Donald, P. P Pradeep, The Science and Engineering of Materials, Thomsom Learning, Singapore, (2006).
Google Scholar
[23]
G.E. Gazza, R.N. Katz, Densification of Ceramics by Gas Overpressure Sintering, MRS Online Proceedings Library (1991) 251.
DOI: 10.1557/proc-251-199
Google Scholar