Fabrication of Multilayer ZnO/TiO2/ZnO Thin Films with Enhancement of Optical Properties by Atomic Layer Deposition (ALD)

Article Preview

Abstract:

Atomic layer deposition (ALD) is a precision growth technique that is able to deposit either amorphous or epitaxial layer on a wide range of substrates. Multilayer thin films have been widely studied because their properties are different from those of bulk materials constituents owing to the two-dimensional films and high density of interfaces. Multilayer nanostructured thin films were fabricated on silicon and glass substrates by ALD. The optical and electrical of multilayer ZnO/TiO2/ZnO films were investigated. The microstructure compositions and surface morphology of these multilayer films were analyzed by X-ray diffraction (XRD), Atomic force microscope (AFM) and Scanning electron microscope (SEM). The optical properties were characterized using photoluminescence (PL) and UV-VIS spectroscopy. XRD patterns confirmed that ZnO with wutrtize crystal structure and TiO2 with anatase structure were presented. The degree of crystallinity of multilayer thin films has been improved through the deposition of ZnO. The intensity of UV luminescence of the multilayer has increased as compared to the single layer TiO2 and bilayer ZnO/TiO2. The multilayer ZnO/TiO2/ZnO has high transmittance (above 80%) in visible region. All the result suggested that the use of multilayer thin films effectively enhanced the quality of films crystallinity and optical properties as compared to single layer ZnO and bilayer ZnO/TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

916-921

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. A. Ross, Electrodeposited multilayer thin films, Anual Review of Materials Science VOL 24 (1994) pages 159.

Google Scholar

[2] Sun-Woo, Choi, et al., Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties,  Nanotechnology 20 (2009) 465603.

DOI: 10.1088/0957-4484/20/46/465603

Google Scholar

[3] E. Przezdziecka, L. Wachnicki, W. Paszkowicz, E. Lusakowska, T. Krajewski, G. Luka, E. Guziewicz, M. Godlewski, Photoluminescence, electrical and structural properties of ZnO grown by ALD at Low temperature, Semiconductor Science and Technology 24 (2009).

DOI: 10.1088/0268-1242/24/10/105014

Google Scholar

[4] A. W. Ott, R. P. H. Chang, Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates , Materials Chemistry and Physics 58 (1999) 132-138.

DOI: 10.1016/s0254-0584(98)00264-8

Google Scholar

[5] E. Przezdziecka, T. Krajewski, L. Wachnicki, A. Szczepanik, A. Wojcik-Glodowska, S. Yatsunenko, E. Lusakowska, W. Paszkowicz, E. Guziewicz, M. Godlewski, Characterization of ZnO Films Grown at Low Temperature, Acta Physica Polonica A 114 (2008).

DOI: 10.12693/aphyspola.114.1303

Google Scholar

[6] S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, S. C. Gong, H. J. Chang, H. H. Park, H. Jeon, Characteristics of the ZnO thin films transistor by atomic layer deposition at various temperatures, Semiconductor Science and Technology 24 (2009).

DOI: 10.1088/0268-1242/24/3/035015

Google Scholar

[7] A. Yamada, B. S. Sang, M. Konagai, Atomic layer deposition of ZnO transparent conducting oxides. Applied Surface Science 112 (1997) 216-222.

DOI: 10.1016/s0169-4332(96)01022-7

Google Scholar

[8] S. H. K. Park, Y. E. Lee, Controlling preffered orientation of ZnO thin films by Atomic layer deposition, Journal of Materials Science 39 (2004) 2195-2197.

DOI: 10.1023/b:jmsc.0000017786.81842.ae

Google Scholar

[9] Sangsang, B. and, Yamada, A. and, Konagai, Makoto, Highly Stable ZnO Thin Films by Atomic Layer Depositions, Japanese journal of applied physics. Pt. 2, Letters 37 (1998) L1125-L1128.

DOI: 10.1143/jjap.37.l1125

Google Scholar

[10] A. Pourret, P. Guyot-Sionnest, J. W. Elam, Atomic Layer deposition of ZnO in Quatum Dot Thin Films, Advanced Materials 21 (2009) 232-235.

DOI: 10.1002/adma.200801313

Google Scholar

[11] Y. H. I. a. Y. B. H. Suk Lee, Two-step growth of ZnO films on silicon by Atomic layer deposition. Korean Journal Chem. Eng 22 (2005) 5.

Google Scholar

[12] W. S. Choi, E. J. Kim, S. G. Seong, Y. S. Kim, C. Park, S. H. Hahn, Optical and structural properties of ZnO/TiO2/ZnO multilayer prepared via electron beam evaporation, Vacuum 83 (2009) 878-882.

DOI: 10.1016/j.vacuum.2008.09.006

Google Scholar

[13] F. Huang, B. Xie, B. Wu, L. Shao, M. Li, H. Wang, Y. Jiang, Y. Song, Enhancing the crystallinity and surface roughness of sputtered TiO2 thin films by ZnO underlayer. Applied Surface Science 255 (2009) 6781-6785.

DOI: 10.1016/j.apsusc.2009.02.060

Google Scholar

[14] H. Kumagai, Y. Tanaka, M. Murata, Y. Masuda, T. Shinagawa, Novel TiO2/ZnO multilayer mirrors at water window, wavelengths fabricated by atomic layer epitaxy, Journal of Physics: Condensed Matter 22 (1 December 2010) 474008-474014.

DOI: 10.1088/0953-8984/22/47/474008

Google Scholar

[15] R. Hussin, X. Hou, and K-L Choy, Growth of ZnO Thin Films on Silicon Substrates by Atomic Layer Deposition, Defect and Diffusion Forum, VOL 329, Paper 16, 159-164, (2012).

DOI: 10.4028/www.scientific.net/ddf.329.159

Google Scholar

[16] R. Hussin, X. Hou, and K-L Choy, Enhancement of Crystallinity and Optical Properties of Bilayer TiO2 /ZnO Thin Films Prepared by Atomic Layer Deposition. Journal. Nanosci. Nanotechnol. VOL 11, Number 9, 8143-8147 (2011).

DOI: 10.1166/jnn.2011.5086

Google Scholar

[17] C. X. Shan, X. Hou, K. -L. Choy, C. Patrick, Improvement in corrosion resistance of CrN coated stainless steel by Atomic Layer Deposition, Surface and Coatings Technology 202 (2008) 2147-2151.

DOI: 10.1016/j.surfcoat.2007.08.078

Google Scholar

[18] L. Xu, L. Shi, X. Li, Effect of TiO2 buffer Layer on the structural and optical properties of ZnO thin films deposited by E-beam evaporation and sol-gel method. Applied Surface Science 255 (2008) 3230-3234.

DOI: 10.1016/j.apsusc.2008.09.026

Google Scholar

[19] L. Xu, H. Shen, X. Li, R. Zhu, Enhanced ultravoilet emission from ZnO thin film covered by nanoparticles, Chin. Opt. Lett. 7 (2009) 953-955.

DOI: 10.3788/col20090710.0953

Google Scholar

[20] L. Shi, H. Shen, L. Jiang, X. Li, Co-emission of UV, violet and green photoluminescene of ZnO/TiO2 thin films, Materials Letters 61 (2007) 4735-4737.

DOI: 10.1016/j.matlet.2007.03.019

Google Scholar

[21] A. F. Lotus, S. N. Tacastacas, M. J. Pinti, L. A. Britton, N. Stojilovic, R. D. Ramsier, G. G. Chase, Physica E: Low-dimensional Systems and Nanostructures In Press, Corrected Proof.

DOI: 10.1016/j.physe.2010.10.015

Google Scholar

[22] K. S. S. Harsha, Principles of physical Vapour deposition of thin films, Elsevier Ltd, (2006).

Google Scholar

[23] J. P. Kar, G. Bose, S. Tuli, Correlation of electrical and morphological properties of sputtered aluminium nitride films with deposition temperature, Current Applied Physics 6 (2006) 873-876.

DOI: 10.1016/j.cap.2005.05.001

Google Scholar

[24] U. Choppali, B. P. Gorman, Structural and Optical properties of nanocrystalline ZnO thin films synthesized by the citrate precursor, Journal of Luminescence 128 (2008) 1641-1648.

DOI: 10.1016/j.jlumin.2008.03.013

Google Scholar

[25] M. Tadatsugu, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology 20 (2005) S35.

DOI: 10.1088/0268-1242/20/4/004

Google Scholar

[26] W. G. C.W. Zou, Transactions on electrical and electronic materials vol. 11 (2010) 1-10.

Google Scholar