Effects of PCBM Loading and Thermal Annealing on Nanomorphology of Blend of Polymer/Fullerene Thin Films Solar Cells: Impact on Charge Carrier Mobility and Efficiency

Article Preview

Abstract:

Blend of P3HT/Fullerene thin films solar cell with two different percentage ratio of PCBM loading is investigated. Optical absorption spectroscopy is employed to elucidate the nature of PCBM cluster formation upon thermal annealing. Sandwich structures comprising of ITO/ Cs2CO3/ P3HT: PCBM/ LiF/ Al (electron only device), and ITO/ PEDOT:PSS/ P3HT:PCBM/ Au (hole only device) are fabricated using spin coating for the investigations concerning electron and hole mobilities. The impact of charge carrier mobilities on bimolecular recombination and ultimately the power conversion efficiency for two different PCBM loading is also investigated. A direct correlation between Langev in recombination rate and short circuit current density as a function of thermal annealing is realized. The maximum power conversion efficiency is measured at 150°C for P3HT: PCBM (1:1) solar cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-165

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. R. Forrest, M. E. Thompson, Chem. Rev. Vol. 107 (2007), pp.923-925.

Google Scholar

[2] G. Dennler, M. C. Scharber, C. J. Brabec, Advanced Materials Vol. 21 (2009), pp.1323-1338.

Google Scholar

[3] J. Nelson, Materials Today Vol. 14 (2011), pp.462-470.

Google Scholar

[4] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Nature MaterrialsVol. 7 (2008), pp.158-164.

DOI: 10.1038/nmat2102

Google Scholar

[5] F-C. Chen, C-J. Ko, J-L. Wu, W-C. Chen, Solar Energy Materials and Solar Cells, Vol. 94 (2010), pp.2426-2430.

Google Scholar

[6] G. Li, R. Zhu, Y. Yang, Nature Photonics, Vol. 6 (2012), pp.153-160.

Google Scholar

[7] H. Hoppe, N. S. Sariciftci, Journal of Materials Chemistry, Vol. 16 (2006), pp.45-61.

Google Scholar

[8] O. Oklobia, T. S. Shafai, Solid-State Electronics, Vol. 87 (2013), pp.64-68.

Google Scholar

[9] E. A. Parlak, Solar Energy Materials and Solar Cells, Vol. 100 (2012), pp.174-184.

Google Scholar

[10] D. Chirvase, J. Parisi, J. C. Hummelen, D. Dyakonov, Nanotechnology, Vol. 15 (2004), pp.1317-1323.

DOI: 10.1088/0957-4484/15/9/035

Google Scholar

[11] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, Journal of Materials Science, Vol. 40 (2005), pp.1371-1376.

Google Scholar

[12] V. D Mihailetchi, H. Xie, D. de Boer, L. J. A. Koster, P. W. M. Blom, Advanced Functional Materials, Vol. 16 (2006), pp.699-708.

DOI: 10.1002/adfm.200500420

Google Scholar

[13] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, Applied Physics Letters, Vol. 86 (2005), 063502, pp.1-3.

Google Scholar

[14] A. Swinnen, I. Haeldermans, M. vandeVen, J. D'Haen, G. Vanhoyland, S. Aresu, M. D'Olieslaeger, J. Manca, Advanced Functional Materials, Vol. 16 (2005), pp.760-765.

DOI: 10.1002/adfm.200500812

Google Scholar

[15] Y. -C. Huang, Y. -C. Liao, S. -S. Li, M. -C. Wu, C. -W. Chen, W. -F. Su, Solar Energy Materials and Solar Cells Vol. 93 (2009), pp.888-892.

Google Scholar

[16] O. Oklobia, T. S. Shafai, Solar Energy Materials and Solar Cells, Vol. 117 (2013), pp.1-8.

Google Scholar

[17] M. A. Lampert, P. Mark: Current Injection in Solids, (Academic Publications, New York 1970).

Google Scholar

[18] S. M. Sze, Semiconductor Devices Physics and Technology, (John Wiley & Sons Publications, Canada 1985).

Google Scholar

[19] M. Kuik, L. J. A. Koster, G. A. H. Wetzelaer, P. W. M. Blom, Physical Review Letters, Vol. 107 (2011), pp.1-5.

Google Scholar

[20] P. Langevin, Ann. Chim. Phys. Vol. 28 (1903), p.433.

Google Scholar

[21] L. J. A. Koster, V. D Mihailetchi, P. W. M. Blom, Applied Physics Letters, Vol. 88 (2006) 052104, pp.1-3.

Google Scholar