First-Principles and Experimental Study on Cu Doped SnO2 Structure

Article Preview

Abstract:

SnO2 and Cu-SnO2 thin films were fabricated by the sol-gel method. The influence of annealing temperature and copper addition on the morphology and microstructure of the films was studied using X-ray diffraction (XRD) and UV-Visible, respectively. The results show that the tetragonal rutile phase is evidenced by XRD with no other phases observed. The crystallinity of SnO2 and Cu-SnO2 thin films had been improved with the increasing annealing temperature. The grain size decreased after Cu doping. On theoretical, Pure and Cu-SnO2 were calculated by first-principles full potential linearized augmented plane wave ultra-soft pseudo-potential method to investigate band structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-38

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.G. Park, M.G. Kang, S. Ryu, K.M. Kim, S.M. Chang, Colorado, Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells, J. Photochem. Photobiol. A. 161 (2004) 105–110.

DOI: 10.1016/s1010-6030(03)00280-6

Google Scholar

[2] G. Leo, R. Rella, P. Siciliano, S. Capone, J.C. Alonso, V. Pankov et al, Southampton, Sprayed SnO2 thin films for NO2 sensors, Sens. Actuators B. 58 (1999) 370–374.

DOI: 10.1016/s0925-4005(99)00098-2

Google Scholar

[3] E. Cetinorgu, S. Goldsmith, R.L. Boxman, Tel Aviv, Air annealing effects on the optical properties of ZnO-SnO2 thin films deposited by a filtered vacuum arc deposition system, Semicond. Sci. Technol. 21 (2006) 364-369.

DOI: 10.1088/0268-1242/21/3/027

Google Scholar

[4] M. Batzill, U. Diebold, The surface and materials science of tin oxide, Progress in Surf. Sci. 79 (2005) 47-154.

DOI: 10.1016/j.progsurf.2005.09.002

Google Scholar

[5] A. Lopes, E. Fortunato, P. Nunes, P. Vilarinho, R. Martins, Strasbourg, Correlation between the microscopic and macroscopic characteristics of SnO2 thin films gas sensors, Int. J. Inorg. Mater. 3 (2001) 1349–1351.

DOI: 10.1016/s1466-6049(01)00160-x

Google Scholar

[6] S. Supothina, Boston, Gas sensing properties of nanocrystalline SnO2 thin films prepared by liquid flow deposition, Sens. Actuators B. 93 (2003) 526–530.

DOI: 10.1016/s0925-4005(03)00178-3

Google Scholar

[7] V. Consonni, G. Rey, H. Roussel, D. Bellet, Grenoble, Thickness effects on the texture development of fluorine-doped SnO2 thin films: The role of surface and strain energy, J. Appl. Phys. 111 (2012) 033523.

DOI: 10.1063/1.3684543

Google Scholar

[8] N.S. Ramgir, Y.K. Hwang, S.H. Jhung, H.K. Kim et al, Taejon, CO sensor derived from mesostructured Au-doped SnO2 thin film, Appl. Surf. Sci. 252 (2006) 4298-4305.

DOI: 10.1016/j.apsusc.2005.07.015

Google Scholar

[9] C.V. Santilli, S.H. Pulcinelli, G.E.S. Brito, V. Briois, Orsay, Sintering and crystallite growth of nanocrystalline copper doped tin oxide, J. Phys. Chem. B. 103 (1999) 2660-2667.

DOI: 10.1021/jp984129v

Google Scholar

[10] R.S. Niranjan, K.R. Patil, S.R. Sainkar, I.S. Mulla, India, High H2S-sensitive copper-doped tin oxide thin film, Mater. Chemi. Phys. 80 (2003) 250-256.

DOI: 10.1016/s0254-0584(02)00467-4

Google Scholar

[11] J. Zhao, S.X. Wu, J.Q. Liu, H. Liu, S.P. Gong, D.X. Zhou, Wuhan, Tin oxide thin films prepared by aerosol-assisted chemical vapor deposition and the characteristics on gas detection, Sens. Actuators B. 145 (2010) 788-793.

DOI: 10.1016/j.snb.2010.01.039

Google Scholar

[12] L. Zbroniec, A. Martucci, T. Sasaki, N. Koshizaki, Japan, Optical CO gas sensing using nanostructured NiO and NiO/SiO2 nanocomposites fabricated by PLD and sol-gel methods, Appl. Phys. A. 79 (2004) 1303-1305.

DOI: 10.1007/s00339-004-2757-0

Google Scholar

[13] W.B. Chen, J.B. Li, Padua, Magnetic and electronic structure properties of Co-doped SnO2 nanoparticles synthesized by the sol-gel-hydrothermal technique, J. Appl. Phys. 109 (2011) 083930.

DOI: 10.1063/1.3575316

Google Scholar

[14] W.Z. Xiao, L.L. Wang, L. Xu, X.F. Li, H.Q. Deng, Hunan, First-principles study of magnetic properties in Ag-doped SnO2, Phys. Status Solidi B. 248 (2011) 1961-(1966).

DOI: 10.1002/pssb.201046567

Google Scholar

[15] V.V. Kissine, S.A. Voroshilov, V.V. Sysoev, Saratov, A comparative study of SnO2 and SnO2: Cu thi films for gas sensor applications, Thin Solid Films. 348 (1999) 304-311.

DOI: 10.1016/s0040-6090(99)00057-7

Google Scholar

[16] A.A. Ogwu, E. Bouquerel, O. Ademosu, S.M. oh, E. Crossan, F. Placido, Scotland, The influence of power and oxygen flow rate during deposition on the optical transmittance of copper oxide thin films prepared by reactive magnetron sputtering, J. Phys. D: Appl. Phys. 38, 266 (2005).

DOI: 10.1088/0022-3727/38/2/011

Google Scholar

[17] W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, and Y. L. Chen, Taiwan, Effect of post-annealing on the optoelectronic properties of ZnO: Ga films prepared by pulsed direct current magnetron sputtering, Thin Solid Films 518, 3882 (2010).

DOI: 10.1016/j.tsf.2009.10.149

Google Scholar