Interference Detection for the Stationary Internal Toroidal Gear Machining

Article Preview

Abstract:

Interfenrence detection is a crucial problem in the process of the stationary internal toroidal gear machining. This paper proposes a new method to detect interference regions in 3-axis stationary internal toroidal gear machining. With this method,numerical control machining geometric model is built to detect interference. Interference regions can be identified effectively by comparing intersection point between detecting line and spiral tooth flank with that between detecting line and tool sweep. It was found that this method not only can be used to detect local interference regions but also global interference regions according to whether dectecting line and not processing area of curved surface have intersection point.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-373

Citation:

Online since:

January 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yao Ligang, Jian S Dai, Guowu Wei, et al. Geometric Modelling and Meshing Characteristics of the Toroidal Drive [J]. Transaction of ASME, Journal of Mechanical Design, 2005, 127(5): 988-996.

DOI: 10.1115/1.1906248

Google Scholar

[2] Yao Ligang, Jian S Dai, Guowu Wei, et al. Comparative Analysis of Meshing Characteristics with Respect to Different Meshing Rollers of the Toroidal Drive [J]. Mechanism and Machine Theory, 2006, 41: 1237-1255.

DOI: 10.1016/j.mechmachtheory.2005.10.010

Google Scholar

[3] Yao Ligang, Jian S Dai, Huamin Li. Mathematical Modelling and Manufacturing of the Internal Toroidal Tooth Profile [J]. Journal of Mechanical Engineering Science, 2004, 218: 1043-1051.

DOI: 10.1243/0954406041991224

Google Scholar

[4] Yao Ligang, Jian S Dai, Guowu Wei. Error Analysis and Compensation for Meshing Contact of Toroidal Drive [J]. Transaction of ASME, Journal of Mechanical Design, 2006, 128(3): 526-533.

DOI: 10.1115/1.2179460

Google Scholar

[5] Peeken H, Troeder Chr, Cierniak S, et al. Entwicklung und Konstruktion des Toroidgetriebes [J]. Konstruktion, 1979, 31(11): 421-428.

Google Scholar

[6] Peeken H, Troeder C, Tooten K H. Borechnung und Messung der Lastverteilung im Toroidgetriebe [J]. Konstruction, 1984, 36(3): 81-86.

Google Scholar

[7] Xu Lizhong, Huang Zhen. Friction Theory for Toroidal Drive[J]. Engineering Science, 2002, 4(3): 63~67.

Google Scholar

[8] Xu Lizhong, Yang Yulin, Huang Zhen. Ehd Condtition for Toroidal Drive[J]. Chinese Journal of Mechanical Engineering, 2002, 38(9): 114~117.

Google Scholar

[9] Xu Lizhong, Huang Zhen, Yang Yulin. Contact Stress for Toroidal Drive[J]. Trans of ASME, Journal of Mechanical Design, 2003, 125: 165-168.

DOI: 10.1115/1.1543990

Google Scholar

[10] X.M. Ding, J.Y.H. Fuh*, K.S. Lee. Interference detection for 3-axis mold machining[J]. Journal of Computer-Aided Design, 2001, 33: 561-569.

DOI: 10.1016/s0010-4485(00)00097-x

Google Scholar

[11] S. Ding M.A. Mannan*,A.N. Poo. Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces[J]. Journal of Computer-Aided Design, 2004, 36: 1281-1294.

DOI: 10.1016/s0010-4485(03)00109-x

Google Scholar

[12] Du Juan, Yan Xianguo, Tian Xitian. Local interference detection and avoidance in five-axis machining of complex surfaces[J]. Journal of Graphics, 2012, 33(1): 113-121.

Google Scholar

[13] Wang Jing, Zhang Dinghua, Wu Baohai, Luo Ming. Tool Orientation Optimization Method in Four-axis CNC MachiningBased on Critical Constraints[J]. Journal of Mechanical Engineering, 2012, 48(17): 114-120.

DOI: 10.3901/jme.2012.12.114

Google Scholar