Deep Removal of Methyl Mercaptan in Biogas

Article Preview

Abstract:

For a distributed PEMFC power station utilizing biogas as a source to produce hydrogen, deep desulfurization of the biogas is important. ZnO/γ-Al2O3 and CuO/γ-Al2O3 were prepared by an impregnation method, and their performances on CH3SH removal in the biogas have been studied. Results showed that CuO/γ-Al2O3 is able to remove CH3SH to below 10 ppb at 250-400 °C and has a sulfur capacity of 0.056 mmol g-1 at 300 °C. Regarding to the desulfurization mechanism, it has been confirmed that the removal of CH3SH with CuO/γ-Al2O3 is based on chemical adsorption. In the desulfurization, CH4s dry reforming took place at above 250 °C, and the generated H2 and CO reduced CuO to Cu2O and Cu. Further, it was supposed that H2S generates through the hydrogenation of CH3SH at the presence of H2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

641-648

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Shiratori, T. Ijichi, T. Oshima and K. Sasaki: Int. J. Hydrogen Energy Vol. 35 (2010), p.7905.

Google Scholar

[2] G.K. Zeng, J. Xie and F. Yin: Renewable Energy Resources Vol. 38 (2005), p.119.

Google Scholar

[3] M. Komiyama, T. Misonou, S. Takeuchi, K. Umetsu and J. Takahashi: International Congress Series Vol. 1293 (2006), p.234.

DOI: 10.1016/j.ics.2006.03.008

Google Scholar

[4] S. P. Hernández, F. Scarpa, D. Fino and R. Conti: Int. J. Hydrogen Energy Vol. 36 (2011), p.8112.

Google Scholar

[5] D. D. Papadias, S. Ahmed and R. Kumar: Energy Vol. 257 (2012), p.44.

Google Scholar

[6] R. Ciccoli, V. Cigolotti, R.L. Presti, E. Massi, S.J. McPhail, G. Monteleone, A. Moreno, V. Naticchioni, C. Paoletti, E. Simonetti and F. Zaza: Waste Manage. Vol. 30 (2010), p.1018.

DOI: 10.1016/j.wasman.2010.02.022

Google Scholar

[7] A. B. Baspinar, M. Turker, A. Hocalar and I. Ozturk: Process Biochem. Vol. 46 (2011), p.916.

Google Scholar

[8] X.Y. Zhao, S.S. Fan, X.Y. Yang and D.Q. Liang: Chinese Journal of Bioprocess Engineering Vol. 3 (2005), p.20.

Google Scholar

[9] Y. Shiratori, T. Oshima and K. Sasaki: Int. J. Hydrogen Energy Vol. 33 (2008), p.6316.

Google Scholar

[10] M. Hussain, N. Abbas, D. Fino and N. Russo: Chem. Eng. J. Vol. 188 (2012), p.222.

Google Scholar

[11] S. Hernández, L. Solarino, G. Orsello, N. Russo, D. Fino, G. Saracco and V. Specchia: Int. J. Hydrogen Energy Vol. 33 (2008), p.3209.

DOI: 10.1016/j.ijhydene.2008.01.047

Google Scholar

[12] X.Q. Wang, J. Qiu, P. Ning, X.G. Ren, Z.Y. Li, Z.F. Yin, W. Chen and W. Liu: J. Hazard Mater. Vol. 229-230 (2012), p.128.

Google Scholar

[13] T. Jirsak, J. Dvorak and J.A. Rodriguez: J. Phys. Chem. B Vol. 103 (1999), p.5550.

Google Scholar

[14] S. Nagase, S. Takami, A. Hirayama and Y. Hirai: Catal. Today Vol. 45 (1998), p.393.

Google Scholar

[15] A.J. Hernández-Maldonado, F.H. Yang, G. Qi and R.T. Yang: Appl. Catal. B Vol. 56 (2005), p.111.

Google Scholar

[16] M. Xue, R. Chitrakar, K. Sakane, T. Hirotsu, K. Ooi, and Yoshimura Y, et al: J. Colloid Interface Sci. Vol. 298 (2006), p.535.

Google Scholar

[17] H.T. Kim, K.W. Jun, S.M. Kim, H.S. Potdar and Y. S . Yoon: Energy Fuels Vol. 20 (2006), p.2170.

Google Scholar

[18] C. Ratnasamy, J.P. Wagner, S. Spivey and E. Weston: Catal. Today Vol. 198 (2012), p.233.

Google Scholar

[19] W.M. Liu and M. Morales. Analytical Instrumentation (2009), p.37.

Google Scholar

[20] X. Feng: Chemical Industry and Engineering Progress Vol. 21 (2002), p.773.

Google Scholar

[21] H. X. Liu, Y.L. Wang, Y. Zhang and L.P. Chang: Clean Coal Technology Vol. 16 (2010), p.52.

Google Scholar

[22] H.T. Kim, K.W. Jun, H.S. Potdar, Y.S. Yoon and M.J. Kim: Energy Fuels Vol. 21 (2007), p.327.

Google Scholar

[23] B.G. Huo and F.J. Tian: China Biogas Vol. 24 (2006), p.55.

Google Scholar