Influence of Ti to the Microstructure and Mechanical Properties of Al-12Si-3.2Cu-1Mg-2.4Ni Piston Alloy

Article Preview

Abstract:

Al-12Si-3.2Cu-1Mg-2.4Ni-χTi (χ=0, 0.2) alloys were prepared by squeeze casting process, and then heat-treated. The mechanical properties were tested at 350°C, the microstructure and phases in them were investigated by optical microscope, SEM, EDS and XRD. It is found that the grain size has an obvious increment after 0.2 wt. % Ti additions to Al-12Si-3.2Cu-1Mg-2.4Ni, and the ultimate tensile strength at elevated-temperature increased accordingly. Intermetallic compounds, such as γ-Al7Cu4Ni, M-Mg2Si, Q-Al5Cu2Mg8Si6 and δ-Al3CuNi existing in alloys with and without Ti addition. Needle-like Ti containing phase with the elements of Al, Si and Ti created in Al-12Si-3.2Cu-1Mg-2.4Ni-0.2Ti alloy, and the eutectic Si is found to distribute by the side of Ti containing phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1278-1283

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yang, K. L. Yu, Y. G. Li, D. G. Zhao, X. F. Liu: Materials and Design. Vol. Vol. 33 (2012), pp.220-225.

Google Scholar

[2] N. A. Belov, D. G. Eskin, N. N. Avxentieva: Acta Materialia. Vol. 53 (2005), pp.4709-4722.

Google Scholar

[3] Zeren M: Mater Des. Vol. 28 (2007 ), pp.2511-2517.

Google Scholar

[4] A. R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche, M. Pekguleryuz: Journal of Alloys and Compounds. Vol. 551 (2013), pp.596-606.

DOI: 10.1016/j.jallcom.2012.10.182

Google Scholar

[5] J. Y. Yao, J. A. Taylor: Alloys Compd. Vol. 519 (2012), pp.60-66.

Google Scholar

[6] H. Ammar, A. Samuel, F. Samuel, E. Simielli, G. Sigworth: Metal. Mater. Trans. A. Vol. 43 (2012), pp.61-73.

Google Scholar

[7] P. Sepehrband, R. Mahmudi, F. Khomamizadeh: Scr. Mater. Vol. 52 (2005), pp.253-257.

Google Scholar

[8] D. H. Xiao, J. N. Wang, D. Y. Ding, S. P. Chen: Alloys Compd. Vol. 343 (2002), pp.77-81.

Google Scholar

[9] M. Zeren: Mater. Process. Technol. Vol. 169 (2005), pp.292-298.

Google Scholar

[10] Y. L. Cai, Y. R. Zheng: Metallographic Study on High Temperature Alloys, National Defence Industry Press, Beijing, 1986. In Chinese.

Google Scholar

[11] R. D. Schueller, F. E. Wawner, A. K. Sachdev: Mater. Sci. Vol. 29 (1994), pp.424-435.

Google Scholar

[12] D. L. Shu: Mechanical Properties of Engineering Materials, China Machine press, Beijing, 2004. In Chinese.

Google Scholar

[13] Y. Yang, Y. G. Li, W. Y. Wu, D. G. Zhao, X. F. Liu: Materials Science and Engineering A. Vol. 528 (2011), pp.5723-5728.

Google Scholar

[14] Y. G. Li, Y. Yang, Y. Y. Wu, L. Y. Wang, X. F. Liu: Materials Science and Engineering A. Vol. 527 (2010), pp.7132-7137.

Google Scholar

[15] Z. Qian, X. F. Liu, D. G. Zhao, G. H. Zhang: Materials Letters. Vol. 62 (2008), pp.2146-2149.

Google Scholar

[16] Y. G. Li, Y. Yang, Y. Y. Wu, Z. S. Wei, X. F. Liu: Materials Science and Engineering A. Vol. 528 (2011), pp.4427-4430.

Google Scholar

[17] D. L. Liu, P. X. Qi: Advanced Al Alloy Pistons, National Defence Industry Press, Beijing, 1999. In Chinese.

Google Scholar