[1]
Top500. http: /www. top500. org.
Google Scholar
[2]
Nvidia tegra. http: /www. nvidia. com/object/tegra. html.
Google Scholar
[3]
NVIDIA Corporation. NVIDIA CUDA Programming Guide. (2009).
Google Scholar
[4]
J.E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for heterogeneous computing systems. Computing in Science and Engineering, 12(3): 66. (2010).
DOI: 10.1109/mcse.2010.69
Google Scholar
[5]
Microsoft. DirectCompute. http: /www. microsoft. com/en-us/download/details. aspx?id=27731.
Google Scholar
[6]
C. -K. Luk, S. Hong, and H. Kim. Qilin: exploiting parallelism on heterogeneous multiprocessors with adaptive mapping. In the Proceedings of 42nd Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-42, pages 45–55. (2009).
DOI: 10.1145/1669112.1669121
Google Scholar
[7]
W. Liu, Z. Du, Y. Xiao, D.A. Bader, and C. Xu. A waterfall model to achieve energy efficient tasks mapping for large scale gpu clusters. In the Proceedings of IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), pages 82–92. (2011).
DOI: 10.1109/ipdps.2011.129
Google Scholar
[8]
Al´ecio P.D. Binotto, C.E. Pereira, and D.W. Fellner. Towards dynamic reconfigurable load-balancing for hybrid desktop platforms. In the Proceedings of IEEE International Symposium on Parallel & Distributed Processing Workshops and Phd Forum (IPDPSW), pages 1–4. (2010).
DOI: 10.1109/ipdpsw.2010.5470804
Google Scholar
[9]
I. Galindo, F. Almeida, and J.M. Bad´ıa-Contelles. Dynamic load balancing on dedicated heterogeneous systems. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, Springer, pages 64–74. (2008).
DOI: 10.1007/978-3-540-87475-1_14
Google Scholar
[10]
S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. -H. Lee, and K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In the Proceedings of IEEE International Symposium on Workload Characterization (IISWC), pages 44–54. (2009).
DOI: 10.1109/iiswc.2009.5306797
Google Scholar
[11]
Nvidia, GPU computing SDK. https: /developer. nvidia. com/gpu-computing-sdk.
Google Scholar