[1]
Briskorn D, Drexl A, in: Scheduling sport leagues using branch-and-price. Operational Research Society, 2009, 60(1): 84-93.
DOI: 10.1057/palgrave.jors.2602515
Google Scholar
[2]
Ryuhei Miyashiro, Tomomi Matsui, in: Minimizing the carry-over effects value in a round robin tournament, Proceedings of the 6th International Conference on the Practice and Theory of Automated Timetabling, 2006: 402-405.
Google Scholar
[3]
D de Werra, T Ekim, C Raess, in: Construction of sports schedules with multiple venues. Discrete Applied Mathematics, 2006, 154(1): 47-58.
DOI: 10.1016/j.dam.2005.03.011
Google Scholar
[4]
Andreas Drexla, Sigrid Knustb, in: Sports league scheduling: graph and resource-based models. Omega, 2004, 35(5): 465-471.
DOI: 10.1016/j.omega.2005.08.002
Google Scholar
[5]
Briskorn D, Drexl A, in: A branching scheme for finding cost-minimal round robin tournaments. Operational Research, 2009, 197(1): 68-76.
DOI: 10.1016/j.ejor.2008.06.008
Google Scholar
[6]
Rasmussen RV, in: Scheduling a triple round Robin tournament for the best Danish soccer league. Operational Research, 2008, 185(2): 795-810.
DOI: 10.1016/j.ejor.2006.12.050
Google Scholar
[7]
Ribeiro C C, Urrutia S, in: Scheduling the Brazilian soccer tournament with fairness and broadcast objectives. Proceedings of the 6th international conference on Practice and theory of automated timetabling VI 2007: 149-159.
DOI: 10.1007/978-3-540-77345-0_10
Google Scholar
[8]
Thomas Bartscha, Andreas Drexlc, and Stefan Krögerd, in: Scheduling the professional soccer leagues of Austria and Germany, Computers and Operations Research, 2006, 33(7): 1907-(1937).
DOI: 10.1016/j.cor.2004.09.037
Google Scholar
[9]
R V Rasmussen, M A Trick, in: A benders approach for the constrained minimum break problem. Operational Research, 2007, 177(1): 198-213.
DOI: 10.1016/j.ejor.2005.10.063
Google Scholar