[1]
Xue Hui and Yang Ren-gang, in: A novel method for non-integer harmonics measurement using continuous wavelet transform [J]. Automation of Electric Power System, 2003, 27(5): 49–53.
Google Scholar
[2]
Cheng Hao-zhong, Ai Qian and Zhang Zhi-gang, in: Power Quality[M]. Beijing: Tsinghua University Press, (2006).
Google Scholar
[3]
ANGRISANI L, DAPONTE P, APUZZO M D, et al, in: A measurement method based on the wavelet transform for power quality analysis [J]. IEEE Trans on Power Delivery, 1998, 13(4): 990-998.
DOI: 10.1109/61.714415
Google Scholar
[4]
PHAM V L and WONG K P, in: Anti-distribution method for wavelet transform filter banks and non-stationary power system waveform harmonic analysis[J]. IEEE Proceedings of Generation, Transform and Distribution, 2001, 148(2): 117-122.
DOI: 10.1049/ip-gtd:20010088
Google Scholar
[5]
Bathurst G N. Watson N R, in: Adaptive frequency-selection method for a Newton solution of harmonics and inter-harmonics[J]. IEEE Proceedings-GDT, 2000, 147(2): 126-130.
DOI: 10.1049/ip-gtd:20000214
Google Scholar
[6]
Ding Yi-feng, Cheng Hao-zhong, Sun Yi-bin and Yan Jian-yong, in: The Parameter Identification Of Interharmonics Based on Wavelet Transform and Prony Algorirhm[J]. Journal of Shanghai Jiaotong University, 2005, 39(12): 2083-(2087).
Google Scholar
[7]
Shie Qian, in: Introduction to time-frequency and wavelet transforms[M]. Beijing: China Machine Press, (2005).
Google Scholar
[8]
VACLAV FINEK and Praha and Dresden, in: Daubechies wavelets on intervals with application to BVPS[J]. Applications of mathematics, 49(5): 465–481, (2004).
DOI: 10.1023/b:apom.0000048123.48173.c7
Google Scholar
[9]
Zhou Wei, in: MATLAB Wavelet analysis advanced technology[M]. Xi'an: Xidian University press, (2006).
Google Scholar
[10]
National voltage & current grade and frequency standardization technial committee, in: power quality national standard application guide[M]. Beijing: China Standard Press, (2009).
Google Scholar