[1]
ČSN EN 572-1 Sklo ve stavebnictví - Základní výrobky ze sodnovápenatokřemičitého skla - Část 1: Definice a obecné fyzikální a mechanické vlastnosti, (Glass in building, Czech national code, Part 1), ČNI, (2004).
Google Scholar
[2]
prEN 13474-1, Draft, Glass in building - Design of glass panes – Part 1: General basis of design, January 1999, CEN 1999, Brussels.
Google Scholar
[3]
prEN 13474-2, Draft, Glass in building - Design of glass panes – Part 2: design for uniformly distributed loads, February 2000, CEN 1999, Brussels.
Google Scholar
[4]
prEN 13474-3, Draft, Glass in building - Determination of strength of glass panes – Part 3: General method of calculation and determination of strength of glass by testing, October 2009, CEN 1999, Brussels.
Google Scholar
[5]
prEN 13474-3, Draft, Glass in building - Determination of strength of glass panes – Part 3: General method of calculation and determination of strength of glass by testing, October 2009, CEN 1999, Brussels.
Google Scholar
[6]
R. Hart, H. Goudey, D. Arasteh, D. Ch. Curija, Thermal performance impacts of glass deflections in installed insulation glazing units, Energy and Buildings 54, pp.453-460, www. elsevier. com.
DOI: 10.1016/j.enbuild.2012.06.026
Google Scholar
[6]
V. Červenka, J. Červenka and R. Pukl, ATENA – A tool for engineering analysis of fracture in concrete, Sadhana 27 (4) (2002) 485-492.
DOI: 10.1007/bf02706996
Google Scholar
[7]
J. Červenka and V.K. Papanikolaou, Three Dimensional Combined Fracture-Plastic Material Model for Concrete, Int. Journal of Plasticity 24 (12) (2008) ISSN 0749-6419, 2192-2220.
DOI: 10.1016/j.ijplas.2008.01.004
Google Scholar