Thermal Conductivity of Hexagonal SiC Nanowire by Nonequilibrium Molecular Dynamics Simulations

Article Preview

Abstract:

Using nonequilibrium Molecular Dynamics method, thermal properties of hexagonal 4H-SiC and 6H-SiC nanowires are investigated. The quantum errors between realistic temperatures and Molecular dynamics temperatures are rectified based on Density Functional Theory. Thermal conductivities of 4H-SiC and 6H-SiC nanowires are both simulated from 50K to 800K. The scale effect on the thermal conductivity of nanowire is also investigated by varying the nanowires length from 10nm to 130nm. Results indicate, if the length of phonon mean free path is shorter than that of nanowire, phonon-surface scattering will surpass boundary scattering to contribute thermal resistances. Therefore, the thermal conductivity of 4H-SiC or 6H-SiC nanowire is mainly determined by the comparability between the length of nanowires and phonon mean free path.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-105

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vashishta P, Kalia K R, Nakano A, Rino J P. J. Appl. Phys 2007; 101: 103515-26.

Google Scholar

[2] Papanikolaou N. J. Phys.: Condens. Matter 2008; 20: 135201-6.

Google Scholar

[3] Wang D H, Xu D, Wang Q, Hao Y J, et al. Nanotechnology 2008; 19: 215602-8.

Google Scholar

[4] Lyver J W, Barojas E B. J. Comput. Theor. Nanosci 2011; 8: 529-13.

Google Scholar

[5] Kim J G, Choi Y Y, Choi D J, Choi S M. J. Electron. Mater 2011; 40: 840-4.

Google Scholar

[6] Ziambaras E, Hyldgaard P. Materials Science and Engineering C 2005; 25: 635-41.

Google Scholar

[7] Zhang X L, Hu M, Giapis K P, Poulikakos1 D. ASME J. Heat Transfer 2012; 134: 102402-8.

Google Scholar

[8] Chantrenne P, Termentzidis K. Phys. Status Solidi A 2012; 209: 2492–7.

Google Scholar

[9] Termentzidis K, Barreteau T, Ni Y X, Merabia S, et al. Phys Rev B 2013; 87: 125410-7.

Google Scholar

[10] Müller-Plathe F. J. Chem. Phys 1997; 106: 6082-6.

Google Scholar

[11] Schelling P K, Phillpot S R, Keblinski P. Phys Rev B, 2002; 65: 144306-17.

Google Scholar

[12] Maiti A, Mahan G D, Pantelides S T. Solid State Communication 1997; 102: 517-22.

Google Scholar

[13] Tersoff J. Phys. Rev. B 1989; 39: 5566-3.

Google Scholar