Sensitivity Analysis of Tool Axis Errors in Large Mill-Turn Machine Tools

Article Preview

Abstract:

This paper proposes an approach to carry out sensitivity analysis of tool axis errors caused by component geometric errors, in order to meet the high precision requirement in holes series machining with mill-turn machine tools. Firstly, ideal kinematic model and real kinematic model considering geometric errors of the mill-turn machine tools are built respectively based on homogeneous transfer matrix and multi-body system theory. Secondly, tool axis errors caused by component geometric errors are simulated using an orthogonal test. Finally, sensitivity analysis of tool axis errors is implemented by means of range analysis and variance analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-342

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Guo Qiang, Sun YuWen, Guo DongMing, Analytical modeling of geometric error induced by cutter runout and tool path optimization for five-axis flank machining, Sci. China Techn. Sci. 54 (2011) 3180–3190.

DOI: 10.1007/s11431-011-4606-7

Google Scholar

[2] Tao Ye, Cai-Hua Xiong, Geometric parameter optimization in multi-axis machining, Computer Aided Design 40 (2008) 879–890.

DOI: 10.1016/j.cad.2008.05.005

Google Scholar

[3] Abdul Wahid Khan, Wuyi Chen, A methodology for systematic geometric error compensation in five-axis machine tools, Int. J. Manu. Techn. 53 (2011) 615-628.

DOI: 10.1007/s00170-010-2848-3

Google Scholar

[4] A. K. Srivastava, S. C. Veldhuis, M. A. Elbestawit, Modelling geometric and thermal errors in a five-axis cnc machine tool, Int. J. Mach. Tool Manu. 35 (1995) 1321-1337.

DOI: 10.1016/0890-6955(94)00048-o

Google Scholar

[5] S. Weikert, R-Test, a new device for accuracy measurements on five axis machine tools, Annals of the CIRP, 53 (2004) 429-432.

DOI: 10.1016/s0007-8506(07)60732-x

Google Scholar

[6] B. Bringmann, W. Knapp, Model-based Chase-the-Ball, calibration of a 5-axis machining center, Annals of the CIRP, 55 (2006) 531–534.

DOI: 10.1016/s0007-8506(07)60475-2

Google Scholar

[7] S.H.H. Zargarbashi, J.R.R. Mayer, Assessment of machine tool trunnion axis motion error, using magnetic double ball bar, Int. J. Mach. Tool Manu. 46 (2006) 1823–1834.

DOI: 10.1016/j.ijmachtools.2005.11.010

Google Scholar

[8] Cefu Hong, Soichi Ibaraki, Atsushi Matsubara, Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools, Precis. Eng. 35 (2011) 1–11.

DOI: 10.1016/j.precisioneng.2010.09.004

Google Scholar

[9] Soichi Ibaraki, Chiaki Oyama, Hisashi Otsubo, Construction of an error map of rotary axes on a five-axis machining center by static R-test, I Int. J. Mach. Tool Manu. 51 (2011) 190–200.

DOI: 10.1016/j.ijmachtools.2010.11.011

Google Scholar

[10] K. Lau, Q. Ma, X. Chu, Y. Liu, S. Olson, An Advanced 6-Degree-of-Freedom Laser System for Quick CNC Machine and CMM Machineand CMM Error Mapping and Compensation, Laser Metrology and Machine Performance IV (1999) 421-434.

Google Scholar

[11] R.P. Paul, Robot Manipulators, Mathematics, Programming and Control, MIT press, Cambridge MA, (1981).

Google Scholar

[12] A.C. Okafor, Yalcin M. Ertekin, Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics, Int. J. Mach. Tool Manu. 40 (2000) 1199–1213.

DOI: 10.1016/s0890-6955(99)00105-4

Google Scholar